• Title/Summary/Keyword: Mechanical actuator

Search Result 1,293, Processing Time 0.025 seconds

Design and Control of Jetting Dispenser Driven by Piezoelectric Actuator (압전 작동기로 구동되는 젯팅 디스펜서의 설계 및 제어)

  • Choi Min-Kyu;Nguyen Quoc Hung;Yun Bo-Young;Choi Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.428-433
    • /
    • 2006
  • This paper presents a new type of jetting dispenser for the integrated circuit(IC) fabrication and surface mount technology. The proposed system is featured by the piezoelectric actuator and hydraulic magnification device. After describing structural component of the dispensing mechanism and its operation principle, both the fluid modeling and the hydraulic magnification modeling are undertaken with a lumped-parameter method based on the analogy of the fluid system and mechanical system. A mathematical governing equation is then derived by integrating the fluid model with the mechanical model of the driving piston and piezoelectric actuator. Subsequently, in order to achieve a desired dispensing amount, control algorithm adjusting duty cycle of the driving voltage is synthesized and control responses are presented in time domain.

  • PDF

Dynamic Analysis of the Piezo-Actuator for a New Generation Lithography System (차세대 리소그라피 시스템을 위한 압전구동기의 동적 해석)

  • Park, Jae-Hak;Jung, Jong-Chul;Huh, Kun-Soo;Chung, Chung-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.472-477
    • /
    • 2003
  • A piezo-actuator is an important component for an E-beam lithography system. But it is very difficult to model its characteristics due to nonlinearities such as hysteresis and creep, to the input voltage. In this paper, one-axis micro stage with a piezo-actuator is modeled including the nonlinear properties. Hysteresis and creep are modeled as the first order differential equation and a time-dependent logarithmic function, respectively. The dynamic motion of the stage is also modeled as a mass-spring-damper system and the parameters are determined by utilizing the system identification technique. The simulation tool for a micro stage is constructed using the commercial software and its simulation results are compared with the experimental data.

Dynamic Characteristic Analysis of Aerodynamic Load Simulator English (항공기 조종면 부하재현장치의 운동 특성 해석)

  • Nam, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.478-485
    • /
    • 2001
  • A dynamic load simulator(DLS) which can reproduce on-ground the aerodynamic hinge moment of control surface is an essential rig for the performance and stability test of aircraft actuation system. By setting up load actuator as counter acting with the control surface driving actuator and designing an appropriate force control system for load actuator, DLS can be mechanized. Obtaining an accurate mathematical model for the DLS is the first step to successfully design an aerodynamic load replicati on system. Two theoretical models are presented and tested for their validities with the experimental results, which turns out to be not successful. An alternative way of using system identification approaches in investigated to develop a good nominal model for DLS dynamics, and suitable uncertainty bounds for this nominal model are proposed with the consideration of experimental results.

Performance Test and Finite Element Analysis of Pneumatic Muscle Actuator (공기압 근육 구동기의 유한요소 해석 및 성능시험)

  • Huh Shin;Bae Sang-Kyu;Kim Dong-Soo;Kim Wan-Doo;Hong Sung-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.662-669
    • /
    • 2006
  • The pneumatic muscle actuator consists of an air bellows tube with two end-flanges. The air bellows tube is made from rubber layers and flexible sheathing formed from nylon 6 fibers. This structure can be stretched or compressed to convert the radial expansive forces into contractile forces. We performed the finite element analysis and the performance test of pneumatic muscle actuator. Also, the pneumatic muscle actuator was manufactured and tested by home-made tester. The results of FEA was similar with performance test below the maximum error of 42 %.

A Study on Design and Characteristics of Linear Magneto-strictive Actuator Using Terfenol-D (Terfenol-D를 이용한 선형 자기변형 구동기의 설계 및 특성 연구)

  • Lim, Chae-Wook;Chung, Tae-Young;Moon, Seok-Jun;Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.310.2-310
    • /
    • 2002
  • Terfenol-D is one of magnetostrictive materials which have the property of converting the energy in magnetic fields into mechanical movement and vice versa. We designed and fabricated a linear magnetostrictive actuator using Terfenol-D. It has 25mm diameter and 100mm long. To grasp the characteristics of it, a series of tests were performed in the range of 50㎐ below. Induced-strain actuation displacements of the actuator measured by test and predicted by magnetic analysis agreed well. (omitted)

  • PDF

FSI Analysis of Piston Tilting for Pneumatic Actuator (공압 액추에이터의 피스톤 틸팅에 관한 FSI 해석)

  • Jang, Sung-Cheol;Jung, Won Taick;Park, Woon-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.144-153
    • /
    • 2016
  • In this research performed on a pneumatic actuator, the air flow entering and exiting the cylinder, and the motion and deformation characteristics of the piston during operation of the actuator, were predicted. This was carried out by utilizing an FSI(Fluid-Structural Interaction) analysis technique that incorporates principles in computational fluid dynamics and structural stress analysis, and potential performance degradation factors were examined. Analysis results indicated that performance improvements could be made through design modifications. These include adding an inlet and outlet on the upper and lower sections of the cylinder in the conventional model, and increasing the number of sites for piston guide bars from three to four.

A Study on the Driving Principles of a Novel Non-contact Surface Actuator Using Combination of Magnetic Force (비접촉 평면 구동기의 자기력 조합 방식 구동 원리)

  • Jung, Kwang-Suk;Baek, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.115-121
    • /
    • 2001
  • In micro automation technology, the concurrent realization of a high resolution and a large operating rage has been achieved by a dual actuator, usually called by piggy-back system, conventionally. But, because of its manufacturing cost, the complexity of control, and the limit of overall bandwidth, the contract-free and single servo actuators have been suggested with specific applications. In this paper, we suggest a novel non-contact surface actuator suing combination of the Lorentz force and the magnetized force, and discuss the actuating principles including an analytical approach. Differently from the existing planar system, an operating range of the suggested system can be expanded by an additional attachment of active elements. Therefore, it is estimated to be suitable for the next-generation moving system.

  • PDF

Dynamic Characteristic of Permanent Magnetic Actuator (영구자석형 액추에이터의 동작 특성)

  • Seo, J.H.;Kim, H.K.;Joo, S.W.;Hahn, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.24-26
    • /
    • 2004
  • For past decade, medium voltage circuit breakers have used the spring-driven mechanical system for interrupting of electric power. However, these mechanisms have many disadvantages of high power consumption, mechanical control components and electrical switching ones for the coil current. Recently, the vacuum interrupter operated by permanent magnet actuator gives outlook on improved characteristic, higher reliability and cost price reduction as well as the feature of simple structure and few components. This paper deals with the dynamic characteristics of permanent magnet actuator used in the medium voltage distribution systems. Coupled finite element method is used to analysis the dynamic characteristics of permanent magnetic actuator and we compared with those of conventional ones.

  • PDF

Numerical simulation of bubble growth and liquid flow in a bubble jet micro actuator

  • Ko, Sang-Cheol;Park, Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1232-1236
    • /
    • 2014
  • Numerical models of fluid dynamics inside the micro actuator chamber and nozzle are presented. The models include ink flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill process. Since high tapered nozzle is one of the very important parameters for overall actuator performance design. The effects of variations of nozzle thickness, diameter, and taper angles are simulated and some results are compared with the experimental results. It is found that the ink droplet ejection through the thinner and high tapered nozzle is more steady, fast, and robust.

Baseplate Design to Improve Swaging Performance of Actuator in a HDD (HDD 액추에이터의 스웨이징성능향상을 위한 베이스플레이트 최적설계)

  • Lee, Haeng-Soo;Hong, Eo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.760-766
    • /
    • 2009
  • In the manufacturing process of HDD, ball swaging method is commonly used to joint the Head Gimbal Assembly(HGA) with the arm of the actuator. The hub on the HGA is placed into the hole of the actuator arm, and the hub and arm is bonded by the pressure of steel ball. The pressure for plastic deformation on the baseplate causes the undesirable deformation on HGA, such as tilting, flying height change of head. After obtaining the key parameters that have large sensitivity on the swaging process, the optimal shape of baseplate is proposed to increase the static performance during swaging process. Contribution of the proposed design for the swaging performance is verified by contact simulation with elasto-plastic deformation.