• Title/Summary/Keyword: Mechanical Stability Evaluation

Search Result 284, Processing Time 0.023 seconds

Quality Assurance of Leaf Speed for Dynamic Multileaf Collimator (MLC) Using Dynalog Files (Dynalog file을 이용한 동적다엽조준기의 Leaf 속도 정도관리 평가)

  • Kim, Joo Seob;Ahn, Woo Sang;Lee, Woo Suk;Park, Sung Ho;Choi, Wonsik;Shin, Seong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.305-312
    • /
    • 2014
  • Purpose : The purpose of this study is to analyze the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC) and determine the appropriate period of quality assurance (QA). Materials and Methods : The quality assurance of the DMLC equipped with Millennium 120 leaves has been performed total 92 times from January 2012 to June 2014. The the accuracy of leaf position and isocenter coincidence for MLC were checked using the graph paper and Gafchromic EBT film, respectively. The stability of leaf speed was verified using a test file requiring the leaves to reach maximum leaf speed during the gantry rotation. At the end of every leaf speed QA, dynamic dynalog files created by MLC controller were analyzed using dynalog file viewer software. This file concludes the information about the planned versus actual position for all leaves and provides error RMS (root-mean square) for individual leaf deviations and error histogram for all leaf deviations. In this study, the data obtained from the leaf speed QA were used to screen the performance degradation of leaf speed and determine the need for motor replacement. Results : The leaf position accuracy and isocenteric coincidence of MLC was observed within a tolerance range recommanded from TG-142 reports. Total number of motor replacement were 56 motors over whole QA period. For all motors replaced from QA, gradually increased patterns of error RMS values were much more than suddenly increased patterns of error RMS values. Average error RMS values of gradually and suddenly increased patterns were 0.298 cm and 0.273 cm, respectively. However, The average error RMS values were within 0.35 cm recommended by the vendor, motors were replaced according to the criteria of no counts with misplacement > 1 cm. On average, motor replacement for gradually increased patterns of error RMS values 22 days. 28 motors were replaced regardless of the leaf speed QA. Conclusion : This study performed the periodic MLC QA for analyzing the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC). The leaf position accuracy and isocenteric coincidence showed whthin of MLC evaluation is observed within the tolerance value recommanded by TG-142 report. Based on the result obtained from leaf speed QA, we have concluded that QA protocol of leaf speed for DMLC was performed at least bimonthly in order to screen the performance of leaf speed. The periodic QA protocol can help to ensure for delivering accurate IMRT treatment to patients maintaining the performance of leaf speed.

Noodle- Making Properties of Domestic Wheats Cultivars (국내산 밀의 제면 적성에 관한 연구)

  • 남재경;한영숙;현영희;오지영
    • Korean journal of food and cookery science
    • /
    • v.16 no.6
    • /
    • pp.593-601
    • /
    • 2000
  • Seven domestic wheat cultivars, Suwon 261, Suwon 265, Eunpa, Kobun, Alchan, Olgru, and Kumgang, and a standard wheat, ASW(Australian Standard White Wheat), were compared in noodle-making properties. The ash contents of domestic wheats and flours were 0.1-0.3% higher than that of ASW. Therefore, domestic wheats required the control of ash contents during milling process. The protein contents which suggest the flour gluten content were 10.32, 11.3, and 9.57% in Suwon 261, Suwon 265, and Kumgang cultivars, respectively. Valorimeter values of Eunpa, Olgru, and Kumgang which indicate the dough formation time and stability were similar to that of ASW. Resistance rate of domestic wheats was lower than that of ASW. Maximum viscosity in Amylograph for Eunpa, Olgru, and Kumgang were in the range of 500-800BU, which were suitable for making noodles. Increase in weight and volume of Olgru noodle was negatively correlated with protein content. Turbidity was not positively correlated with weight and volume increase, but domestic cultivars except Suwon 265 and Eunpa showed a similar turbidity with ASW. The mechanical properties of wet and dry noodles were evaluated by TPA test before and after cooking. Springiness and cohesiveness of wet noodles increased by cooking, and the domestic cultivars showed higher values than ASW. Springiness and cohesiveness of dry noodle were not increased by cooking in any cultivars. Gumminess, chewiness and hardness of domestic wheat cultivars showed higher values than that of ASW. In the tensile test, wet noodles showed no difference between domestic cultivars and ASW. But dry noodles of domestic wheat cultivars showed higher values than ASW. In the color test for lightness, redness and yellowness, there were no differences between flour and dough of domestic wheat cultivars and ASW. In the sensory evaluation, Kumgang wheat cultivar was the most preferred among the wet and dry noodles of other domestic wheat cultivars and ASW. These results suggested Kumgang wheat cultivar to be a practical wheat variety for noodle-making.

  • PDF

Evaluation of the stress distribution in the external hexagon implant system with different hexagon height by FEM-3D (임플란트 hexagon 높이에 따른 임플란트와 주위 조직의 응력분포 평가)

  • Park, Seong-Jae;Kim, Joo-Hyeun;Kim, So-Yeun;Yun, Mi-Jung;Ko, Sok-Min;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.36-43
    • /
    • 2012
  • Purpose: To analyze the stress distribution of the implant and its supporting structures through 3D finite elements analysis for implants with different hexagon heights and to make the assessment of the mechanical stability and the effect of the elements. Materials and methods: Infinite elements modeling with CAD data was designed. The modeling was done as follows; an external connection type ${\phi}4.0mm{\times}11.5mm$ Osstem$^{(R)}$ USII (Osstem Co., Pusan, Korea) implant system was used, the implant was planted in the mandibular first molar region with appropriate prosthetic restoration, the hexagon (implant fixture's external connection) height of 0.0, 0.7, 1.2, and 1.5 mm were applied. ABAQUS 6.4 (ABAQUS, Inc., Providence, USA) was used to calculate the stress value. The force distribution via color distribution on each experimental group's implant fixture and titanium screw was studied based on the equivalent stress (von Mises stress). The maximum stress level of each element (crown, implant screw, implant fixture, cortical bone and cancellous bone) was compared. Results: The hexagonal height of the implant with external connection had an influence on the stress distribution of the fixture, screw and upper prosthesis and the surrounding supporting bone. As the hexagon height increased, the stress was well distributed and there was a decrease in the maximum stress value. If the height of the hexagon reached over 1.2mm, there was no significant influence on the stress distribution. Conclusion: For implants with external connections, a hexagon is vital for stress distribution. As the height of the hexagon increased, the more effective stress distribution was observed.

The Alignment Evaluation for Patient Positioning System(PPS) of Gamma Knife PerfexionTM (감마나이프 퍼펙션의 자동환자이송장치에 대한 정렬됨 평가)

  • Jin, Seong Jin;Kim, Gyeong Rip;Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.203-209
    • /
    • 2020
  • The purpose of this study is to assess the mechanical stability and alignment of the patient positioning system (PPS) of Leksell Gamma Knife Perfexion(LGK PFX). The alignment of the PPS of the LGK PFX was evaluated through measurements of the deviation of the coincidence of the Radiological Focus Point(RFP) and the PPS Calibration Center Point(CCP) applying different weights on the couch(0, 50, 60, 70, 80, and 90 kg). In measurements, a service diode test tool with three diode detectors being used biannually at the time of the routine preventive maintenance was used. The test conducted with varying weights on the PPS using the service diode test tool measured the radial deviations for all three collimators 4, 8, and 16 mm and also for three different positions of the PPS. In order to evaluate the alignment of the PPS, the radial deviations of the correspondence of the radiation focus and the LGK calibration center point of multiple beams were averaged using the calibrated service diode test tool at three university hospitals in Busan and Gyeongnam. Looking at the center diode for all collimators 4, 8, and 16 mm without weight on the PPS, and examining the short and long diodes for the 4 mm collimator, the means of the validation difference, i.e., the radial deviation for the setting of 4, 8, and 16 mm collimators for the center diode were respectively measured to 0.058 ± 0.023, 0.079 ± 0.023, and 0.097 ± 0.049 mm, and when the 4 mm collimator was applied to the center diode, the short diode, and the long diode, the average of the radial deviation was respectively 0.058 ± 0.023, 0.078 ± 0.01 and 0.070 ± 0.023 mm. The average of the radial deviations when irradiating 8 and 16 mm collimators on short and long diodes without weight are measured to 0.07 ± 0.003(8 mm sd), 0.153 ± 0.002 mm(16 mm sd) and 0.031 ± 0.014(8 mm ld), 0.175 ± 0.01 mm(16 mm ld) respectively. When various weights of 50 to 90 kg are placed on the PPS, the average of radial deviation when irradiated to the center diode for 4, 8, and 16 mm is 0.061 ± 0.041 to 0.075 ± 0.015, 0.023 ± 0.004 to 0.034 ± 0.003, and 0.158 ± 0.08 to 0.17 ± 0.043 mm, respectively. In addition, in the same situation, when the short diode for 4, 8, and 16 mm was irradiated, the averages of radial deviations were 0.063 ± 0.024 to 0.07 ± 0.017, 0.037 ± 0.006 to 0.059 ± 0.001, and 0.154 ± 0.03 to 0.165 ± 0.07 mm, respectively. In addition, when irradiated on long diode for 4, 8, and 16 mm, the averages of radial deviations were measured to be 0.102 ± 0.029 to 0.124 ± 0.036, 0.035 ± 0.004 to 0.054 ± 0.02, and 0.183 ± 0.092 to 0.202 ± 0.012 mm, respectively. It was confirmed that all the verification results performed were in accordance with the manufacturer's allowable deviation criteria. It was found that weight dependence was negligible as a result of measuring the alignment according to various weights placed on the PPS that mimics the actual treatment environment. In particular, no further adjustment or recalibration of the PPS was required during the verification. It has been confirmed that the verification test of the PPS according to various weights is suitable for normal Quality Assurance of LGK PFX.