• Title/Summary/Keyword: Mechanical Productivity

Search Result 679, Processing Time 0.026 seconds

Development of Cleaning System of Electronic Components for the Remanufacturing of Laser Copy Machine (레이저 복합기의 재제조공정을 위한 전자부품 세정시스템의 개발)

  • Bae, Jae-Heum;Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.287-294
    • /
    • 2012
  • In this study, performances of two cleaning methods were analyzed and a cleaning system was designed to develop a cleaning process of electronic components to remanufacture old laser copy machine. First, plasma cleaning as a dry cleaning method was executed to test cleaning ability. In cleaning of printed circuit board (PCB) by plasma, some damages were found near the metal parts, and considering the productivity, this method was not adequate for the cleaning of electronic components. With 4 different cleaning agents, ultrasonic cleaning tests were executed to select an optimal cleaning agent, aqueous agents showed superior cleaning performance compared to semi-aqueous and non-aqueous agents. Cleaning with aqueous cleaning agent A and 28 kHz ultrasonic frequency can be completed in 30 sec to 1 min. Finally, an ultrasonic cleaning system was constructed based on the pre-test results. Optimal cleaning conditions of 40 kHz and $50^{\circ}C$ were found in the field test. The productivity and economic efficiency in remanufacturing of laser copy machine are expected to increase by adapting developed ultrasonic cleaning system.

Milling Cutter Selection in Machining Center Using AHP (AHP를 활용한 머시닝센터의 밀링커터 선정)

  • Lee, Kyo-Sun;Park, Soo-Yong;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.164-170
    • /
    • 2017
  • The CNC machine tool field is showing a growing trend with the recent rapid development of manufacturing industries such as semiconductors, automobiles, medical devices, various inspection and test equipment, mechanical metal processing equipment, aircraft, shipbuilding and electronic equipment. However, small and medium-sized machining companies that use CNC machine tools are experiencing difficulties in increasingly intense competition. Especially, small companies which are receiving orders from 3rd or 4th venders are very difficult in business management. In recent years, company S experienced difficulty to make product quality and delivery time due to the ignorance of the processing method when manufacturing cooling plate jig made of SUS304 material used for cell phone liquid crystal glass processing. In order to solve these problems, we redesigned the process according to the size of our company and tried to manage all processes with quantified data. In the meantime, we have found that there is a need to improve the cutter process, which accounts for most of the machining process. Therefore, we have investigated the correlation between RPM and FEED of three cutters that have been used in the past. As a result, we found that it is the most urgent problem to solve the roughing process during the cutter operation which occupies more than 70% of the total machining. In order to shorten the machining time and improve the quality in machining of SUS304 cooling plate jig, we select the main factors such as price, tool life, maintenance cost, productivity, quality, RPM, and FEED and use AHP to find the most suitable milling cutter. We also tried to solve the problem of delivery, quality and production capacity which was a big problem of S company through experiment operation with selected cutter tool. As a result, the following conclusions were drawn. First, the most efficient of the three cutters currently available in the machining center has proven to be an M-cutter. Second, although one additional facility was required, it was possible to produce the existing facilities without additional investment by supplementing the lack of production capacity due to productivity improvement. Third, the Company's difficulties in delivery and capacity shortfalls have been resolved. Fourth, annual sales increased by KRW 109 million and profits increased by KRW 32 million annually. Fifth, it can confirm the usefulness of AHP method in corporate decision making and it can be utilized in various facility investment and process improvement in the future.

Impacts of Different Organic Fertilizers on Soil Fertility and Soil Respiration for a Corn (Zea mays L.) Cropping System (옥수수 밭에서 유기질 비료가 토양 비옥도 및 토양 호흡에 미치는 영향)

  • Mavis, Brempong Badu;Hwang, Hyun Young;Lee, Sang Min;Lee, Cho Rong;An, Nan Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.151-163
    • /
    • 2022
  • This study was conducted to promote organic fertilizer(s) that sustain soil productivity for corn production and protect the environment as required by the Act on the promotion of eco-friendly agriculture. It was conducted at the research station of the Organic Agriculture Division of the National Institute of Agricultural. The treatments consisted of Compost (Com), Bokashi as fermented organic fertilizer (FOF), and mixed expeller pressed cake (PC). They were applied at 174 kg N /ha to field corn, together with a 'no fertilizer' check in Randomized Complete Block Design. At eight weeks after transplanting (WAT) corn, compost increased soil carbon (C) and nitrogen (N) to 7.48 and 0.76 g/kg respectively, while other fertilizers maintained the initial levels (before treatment application). At corn harvest (13 WAT), soil chemical properties (total C, total N, pH, electrical conductivity, P2O5, Ca, K, and Mg) were similar among all organic fertilizer treatments. For soil respiration, FOF increased soil CO2 respiration by 31-76% above other fertilizer treatments. However, there were no prominent changes in the trends of CH4 fluxes following the two mechanical weeding operations. Fermented organic fertilizer affected N2O emissions between 87-96% lower than other fertilizer treatments. Compared to the initial microbial densities, FOF increased fungi and actinomycete colony foming unit by 25 and 16% at harvest. Therefore, the additional potential of improving soil biological fertility and local availability of raw materials make FOF a better option to sustain soil productivity while protecting the environment.

An Analysis for the Effect of ESP/gas Lift Hybrid System on Oil Productivity (전기공저펌프/가스리프트 혼합시스템이 오일 생산성에 미치는 영향 분석)

  • Lee, Hyesoo;Iranzi, Joseph;Wang, Jihoon;Son, Hanam
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • Selection of a suitable artificial lift is important in terms of efficient operation and economics for oil production. In general, process of well design includes the selection of artificial lift, but the oil recovery could be enhanced by use of hybrid system combined with two types of artificial lift method according to reservoir condition for oil production. Electric submersible pump (ESP), as a presentative artificial lift method, is a manner for supplying the pressure in the lower part of oil well by using of a multi-stage centrifugal pump with an electric energy. However, there is a disadvantage that has a limit to the application period because of mechanical defection on ESP. Accordingly, it is possible to reduce the shutdown time of production well by applying the ESP/Gas lift hybrid system, which is to switch to a gas lift when an ESP is defective. This study describes the effect of ESP/gas lift hybrid system compared with ESP method for a onshore horizontal well locating in the of Permian basin, USA. As a result of study, ESP/gas lift hybrid system could make more effective productivity than ESP method. Also, we quantitatively predicted how much economic benefit would be obtained when the hybrid system was applied in the production well.

A Study on Decision of gate location for Injection molding of Automobile air cleaner Upper cover (자동차용 에어클리너 상부커버 사출성형에서 게이트의 위치 결정)

  • Jang, Sung-Min;Kim, In-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4411-4417
    • /
    • 2015
  • The proper design of the gate location for injection molding of plastic goods is obtained from three-dimensional injection molding analysis for various design alternatives. This paper is study on effect of gate location in injection molding. It have a decisive impact on productivity and quality of plastic goods. This objectives of this paper is to analysis effect of hot runner gate location for resin filling, weld line, injection pressure to manufacture of automobile air cleaner upper case with injection molding machine. Thus, to analysis these problems in this paper, location of gate are gave variety in 4 CASEs. In this paper, the CAE simulation considering each variations in location of gate is performed to predict the cause of faulty which appears in the injection molding process.

A Study on the Development of a Welding Carriage System for Vertical Weld (수직 용접을 위한 용접 캐리지 시스템 개발에 관한 연구)

  • Byun, Hong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.246-254
    • /
    • 2016
  • Thick-shell welding for super-sized oil storage tanks is currently done manually, which causes deterioration in quality and a lack of uniformity due to frequent rewelding. The limitations of the external environment must also be considered for manual welding. This paper describes the development of a carriage system for automatic vertical welding to increase reliability, reduce cost, and enhance productivity. The system consists of a welding platform, carriage device, and control unit, which were conceptually designed according to design specifications and manufactured with modular parts. In addition, the structure was analyzed for safety and to predict design problems in advance, and the results are reflected in reviewing the design. To evaluate the performance of the system, a tensile test, bending test, and weld time test were carried out, and the results were satisfactory. The time required for automatic weld was greatly improved by more than 87%, compared to the manual welding time.

Dynamic Balancing in a Link Motion Punch Press (링크모션 펀치프레스의 다이나믹 발란싱)

  • Suh, Jin-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.415-426
    • /
    • 2007
  • In a link motion punch press, numerous links are interconnected and each link executes a constrained motion at high speed. As a consequence, dynamic unbalance force and moment are transmitted to the main frame of the press, which results in unwanted vibration. This degrades productivity and precise stamping work of the press. This paper presents an effective method for reducing dynamic unbalance in a link motion punch press based upon kinematic and dynamic analyses. Firstly, the kinematic analysis is carried out in order to understand the fundamental characteristics of the link motion mechanism. Then design variable approach is presented in order to automate the model setup for the mechanism whenever design changes are necessary. To obtain the inertia properties of the links such as mass, mass moment of inertia, and the center of mass, 3-dimensional CAD software was utilized. Dynamic simulations were carried out for various combinations of design changes on some links having significant influences on kinematic and dynamic behavior of the mechanism.

Relationship Between Morphology and Itaconic Acid Production by Aspergillus terreus

  • Gao, Qian;Liu, Jie;Liu, Liming
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.168-176
    • /
    • 2014
  • The morphology of filamentous fungi closely correlates with the productivity in submerged culture. Using itaconic acid (IA) production by Aspergillus terreus as a research model, the quantitative relationship between the growth form of A. terreus and IA production was investigated. IA fermentation was scaled up from shake flasks to a 7 L stirred tank bioreactor based on the quantitative relationship. Our results demonstrated the following: (1) Three morphologies of A. terreus were formed by changing the inoculum level and shape of the flask. (2) Investigation of the effects of the three morphologies on broth rheology and IA production revealed the higher yield of IA on dry cell weight (DCW, IA/DCW) and yield of glucose on DCW (consumed glucose/DCW) were achieved during clump growth of A. terreus. (3) By varying the $KH_2PO_4$ concentration and culture temperature, the relationships between clump diameter and IA production were established, demonstrating that the yield of IA on DCW ($R^2$ = 0.9809) and yield of glucose on DCW ($R^2$ = 0.9421) were closely correlated with clump diameter. The optimum clump diameter range for higher IA production was 0.40-0.50 mm. (4) When the clump diameter was controlled at 0.45 mm by manipulating the mechanical stress in a 7 L fermentor, the yield of IA on DCW and yield of glucose on DCW were increased by 25.1% and 16.3%, respectively. The results presented in this study provide a potential approach for further enhancement of metabolite production by filamentous fungi.

A Study on the Characteristics of the Modern Chair Design (현대 의자 디자인의 특성에 관한 연구)

  • 신홍경
    • Korean Institute of Interior Design Journal
    • /
    • no.13
    • /
    • pp.187-196
    • /
    • 1997
  • A Study on the Characteristics of the Modern Chair Design The features of the modern chair design results from the diverse life style unfolded as per the 20th century social structure and the change of the residential space, and new design has been being developed by the scientists and the artists in various fields through their cooperated work in a way. The field of the scientific or technical study and creation of arts can be developed where they can evoke the sympathy in the circumstances under which the various styles of both arts and science meet across, complement crash together, and grow up. The operation which can control in the network of such pluralistic sphere has been needed for a long period and it has been facing the needs from a time and society. The engineering furniture as the counterplan of the above has brought the value of materials into relief to the forms of human life by making the properties of matter the maximum value or changing it. It can be summarized as following characteristics in its materials and forms along as well as the 3 types (handycrafty, mechanical, and ecological expression) in process through the 20th century. 1. Characteristics in Materials elasticity of the chair as per the changes of the flexibility in the steel pipe development of systematic chair using the plasticity of the plywood, plastic, and wire lightweight due to the materials such as aluminum. 2. Formative characteristics formative simplicity for the increase of the function and the quality improvement such as sociality, productivity, environmental and aesthetic nature emphasis on the structure as per the architectural environment and tecniques pursuit of the forms as a container of the human body seeking for the formative values as the cultural symbols coping with the needs from thepluralistic social structure Furniture is not the makeup for convenience sake but most importantexpression as necessaries of our environments. It should identify itself always as per these kind of needs and also it should be able to used to keep the relation of such mutual division, otherwise the purchase of new furniture should be necessary according to every change of the existing situatiov. Our residence doesn't need the specific style but expresses only the properties of the dwellers.

  • PDF

Geomechanical and thermal reservoir simulation during steam flooding

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.505-513
    • /
    • 2018
  • Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.