• Title/Summary/Keyword: Mechanical Production System

Search Result 867, Processing Time 0.052 seconds

Development of Drilling Jig by Practical and Adaptive Tooling System(Part 1) - System Analysis of Part Drawing and Jig Design

  • Sim, Sung-bo;Lee, Sung-Taeg
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.104-108
    • /
    • 2000
  • Drilling Jig is the device according to industrial demand for multi manufacturing products on the growing at alarming rate. In the field of design and making for machine tool working, welding, assembling with jig and fixture for mass production is a specific division. In order to prevent the production defects the optimum design of product, fig and fixture putting in the field is very significant manufacturing method. They require analysis of many kinds of important factors, theory and practice of machine tool operating process and its phenomena, jig & fixture structure, machining condition for tool making tool materials, heat treatment of jig & fixture components, know-how and so on. In this study we designed and constructed a drilling jig of mass production and performed tryout under the Auto CAD, database, and window environment. Especially Part1 of this study is reveals with the analysis of part drawing, jig planning, jig design etc.

  • PDF

A Study on the Quality Improvement of Mechanical Drawing Notes Using Lean 6 Sigma Analysis (린 6시그마 분석을 통한 도면 주기 품질 향상 방안 연구)

  • Jeon, Yong Gu;Huh, Hyoung Jo;Lee, Seong Bae;Park, Hun Hyuk;An, Byung Guk
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.381-393
    • /
    • 2020
  • Purpose: The purpose of this study was to find useful solutions by analyzing causes and results about defects on mechanical drawing notes and provide an automated tool with solutions to mechanical engineers. Methods: The collected data for defects on mechanical drawing notes were from ongoing development and mass production projects. Various measurement methods were used based on the Lean 6 Sigma analysis such as Process analysis, C&E diagram and some statistical analysis. Results: The results of this study are as follows; The results of the Lean 6 Sigma analysis, the validity of the selected indicators for improving drawing notes quality was verified through the verification of cause variables. The strategy established to improve the mechanical drawing notes was reflected as an automated program, and the defects were within a manageable range and achieved target Sigma level. Conclusion: Through the application of the "Mechanical drawing notes automation tool", it is expected to resolve the "Voice of Customer, VOC" and "Voice of Business, VOB".

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.

High Efficient Metal Powder Production by Gas Atomisation Process

  • Unal, Rahmi;Aydin, Mehmet
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.14-15
    • /
    • 2006
  • In this study, a new laval type nozzle was designed and manufactured. Using this nozzle tin powder was produced in close coupled system by using nitrogen gas at different operating conditions. The results showed that the increasing the gas pressure up to 1.47 MPa reduced the mean powder size down to 11.39 microns with a gas/melt mass flow rate ratio of 2.0. Powders are spherical in shape and have smooth surfaces.

  • PDF

Design of hovering flight controller for a model helicopter

  • Shim, Hyeoncheol;Lee, Ho-Eun;Park, Hyunsik;Lee, Kyo-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.344-348
    • /
    • 1992
  • This paper describes a procedure to design a hovering flight controller for a model helicopter using LQG theory. Parameters of the model helicopter in hover are obtained using direct measurements and calculations proposed by other research. A feedback co is by using digital LQG theory. First, a full state feedback controller is designed to the discretized system taking desirable transient response and other assumptions into account. Then a full-state estimator is designed and revised until desirable response is obtained while global stability is maintained. Performance of the controller is tested by computer simulations. Experiments have been performed using a 3-degree-of-freedom gimbal that holds the model helicopter, and the controller exhibited stable hover capability.

  • PDF

Use of numeric-to-symbolic converters for adaptation in control systems

  • Obinata, Goro;Maragishi, Yasushi;Oka, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1393-1398
    • /
    • 1990
  • A new control scheme is proposed in this paper which can cope with varying environment as results of load disturbances, changes of plant dynamics, and failures of components. The objective of this paper is to blend numeric-to-symbolic conversion techniques with linear conventional controllers so as to adapt to the varying environment of the system. The control scheme is based on the parametrization of stabilizing controllers, which is called Kucera/Yula parametrization. The parametrization has been extended to the class of systems which contain numeric-to-symbolic converters. It is shown how the numeric-to-symbolic converters can be blended with the linear controllers.

  • PDF

The Development of Micro Wiring System for Micro Active Endoscope (박막 공정을 이용한 초소형 내시경의 MicroWiring System의 개발)

  • Jung, Seok;Chang, Jun-Keun;Han, Dong-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.362-365
    • /
    • 1997
  • In the field of Micro-Mechanics, it has been known diffcult to integrate the micro-machine with sensor and source line for the conventional copper line cnanot be used in compact and small size. We developed a system to make thethin copper film as a connect line on the poyurethane pipe (2mm in diameter) by the evaporation technique. This system consists of an evaporation chamber two long branches, substrate hoider and a Linear-Rotary motion feed feedthrough. The results showed that thin copper film coated polyurethanc pipe could be applied th the small medical devices such as the micro active endoscope.

  • PDF

Speed Control of a Wind Turbine System Based on Pitch Control (피치제어형 풍력발전시스템의 속도제어)

  • Lim, Jong-Hwan;Huh, Jong-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.109-116
    • /
    • 2001
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is a nonlinear function of wind speed, angular velocity, and pitch angle of the blade. The design of the controller, in general, is performed by linearizing the torque in the vicinity of the operating point assuming the angular velocity of the blade is constant. For speed control, however the angular velocity is on longer a constant, so that linearization of the torque in terms of wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the nonlinear torque model of the blade. This paper also suggests a method of designing a hydraulic control system for changing the pitch angle of the blade.

  • PDF

Design of reduced-order controllers in two-degree-of-freedom control systems

  • Nakamura, T.;Obinata, G.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.753-758
    • /
    • 1988
  • In this paper, we propose a new method of designing a reduced-order controller for a linear discrete-time system. Firstly, we study a design problem for a two-degree-of-freedom control system with a feedforward controller. Secondly, in order to obtain a reduced-order controller, frequency-weighted least squares approximation problems are considered. Thirdly, we propose a synthesis procedure of a reduced-order controller. Finally, an example is given to illustrate the effectiveness of this proposed method.

  • PDF

Design of interlocking masonry units and mechanical properties of masonry assemblages

  • Husema, Metin;Kayaalp, Fatma Birinci
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.97-106
    • /
    • 2019
  • This paper describes the design of a new interlocking masonry system, the production of designed interlocking units and mechanical properties of interlocked masonry assemblages with mortar. In this proposed system, units have horizontal and vertical locks to integrate the units to the wall and have a channel to enable the use of horizontal reinforcements in the wall. Using these units, unfilled, filled or reinforced walls can be constructed with or without mortar. In the production of the interlocking units, it was decided to use foamed concrete. 12 trial productions have been carried out at different mix proportions to obtain the optimum concrete mix. At the end of the mentioned productions, the units were produced with foam concrete which is selected as the most suitable in terms of compressive strength and specific gravity. Then, axial compression, diagonal tension and bed joint shear tests were carried out to determine the mechanical properties of the interlocked masonry assemblages with mortar. Results from the tests showed that interlocks designed to strengthen the system against shear stresses by creating discontinuity throughout the joints have been successful to achieve their aim. Obtained data will enable structural analysis of walls to be constructed with these new units.