• Title/Summary/Keyword: Mechanical Powertrain

Search Result 101, Processing Time 0.021 seconds

The Design of New Cross Country Test Courses for Powertrain System of Military Vehicle (군용 기동장비 내구 신뢰성 향상을 위한 동력장치 내구시험로 설계)

  • Lee, Jeonghwan;Lee, Sangho;Cho, Jinwoo;Kang, Esok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.362-368
    • /
    • 2017
  • The endurance test is important to evaluate and predict defects of the vehicles. In particular, in order to improve the reliability of the endurance test for the powertrain system of military vehicles, the driving load is measured and analyzed at test courses and maneuvering roads. As a result, new test courses for powertrain system is additionally needed to improve test reliability. In this paper, it shows that new test courses for powertrain system is designed and constructed using the measuring and anlayzing result between CPG test courses and army maneuvering roads.

Comparative Study of Powertrain Loss and Efficiency for the Electric Vehicle and Internal Combustion Engine Vehicle (전기차와 내연기관차의 파워트레인 손실 및 효율 비교)

  • Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.29-35
    • /
    • 2019
  • In this paper, the component loss models of the electric vehicle(EV) and the internal combustion engine vehicle(ICEV) are developed to analyze the losses and efficiencies of these two types of vehicles. The EV powertrain efficiency decreases as the vehicle velocity increases over most of the vehicle velocity range because the battery efficiency decreases. Especially, the EV powertrain efficiency decreases significantly when the battery SOC is low. But the ICEV powertrain efficiency increases as the vehicle velocity increases. This is because the efficiencies of both the transmission and engine increases.

Vibration Identification of Gasoline Direct Injection Engine Based on Partial Coherence Function (부분기여도 함수를 이용한 직접분사 가솔린 엔진 부품의 진동원 분석)

  • Chang, Ji-Uk;Lee, Sang-Kwon;Park, Jong-Ho;Kim, Byung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1371-1379
    • /
    • 2012
  • This paper presents a method for estimating the contribution of vibration sources in gasoline direct injection engine parts with a multiple-input system. A partial coherence function was used to identify the cause of the linear dependence indicated by an ordinary coherence function. To apply the partial coherence function to vibration source identification in the powertrain system of a gasoline direct injection engine, a virtual model of a two-input and single-output system is simulated. For the validation of this model, the vibration of the powertrain parts was measured by using triaxial accelerometers attached to the selected vibration sources-a high-pressure pump, fuel rail, injector, and pressure sensor. After calculating the partial coherence between each source based on the virtual model, the vibration contribution of the powertrain system is calculated. This virtual model based on the partial coherence function is implemented to determine the quantitative vibration contribution of each powertrain part.

Development of Shift Map for TMED Type DCT PHEV in Charge Sustaining Mode considering Transmission and Motor Losses (변속기 및 모터 손실을 고려한 TMED Type DCT PHEV의 CS 모드 주행 시 변속맵 개발)

  • Jeon, Sungbae;Bae, Kyunggook;Wi, Junbeom;Namkoong, Choul;Goo, Changgi;Lee, Ji-suk;Hwang, Sung-Ho;Kim, Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.367-373
    • /
    • 2017
  • In this paper, a new shift map was proposed to improve the fuel economy of a transmission mounted electric device(TMED) type dual clutch transmission(DCT) plug-in hybrid electric vehicle(PHEV) by considering transmission and motor losses. To construct the shift map, powertrain efficiencies of the engine-DCT-motor were obtained at each gear step. A shift map that provides the highest powertrain efficiency was constructed for the given wheel torque and vehicle speed. Simulation results showed that the fuel economy of the target PHEV can be improved by the new shift map compared with the existing engine optimal operating line(OOL) shift control.

Modeling and Dynamic Analysis for Electric Vehicle Powertrain Systems (전기 자동차 파워트레인의 모델링 및 동특성 분석)

  • Park, Gwang-Min;Lee, Seong-Hun;Jin, Sung-Ho;Kwak, Sang-Shin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.71-81
    • /
    • 2011
  • Unlike a typical internal combustion engine vehicle, the powertrain system of the pure electric vehicle, consisting of battery, inverter and motor, has direct effects on the vehicle performance and dynamics. Then, the specific modeling of such complex electro-mechanical components enables the insight into the longitudinal dynamic outputs of the vehicle and analysis of entire powertrain systems. This paper presents the dynamic model of electric vehicle powertrain systems based on theoretical approaches to predict and analyze the final output performance of electric vehicles. Additionally, the correlations between electric input signals and the final output of the mechanical system are mathematically derived. The proposed model for powertrain dynamics of electric vehicle systems are validated with a reference electric vehicle model using generic simulation platform based on Matlab/Simulink software. Consequently, the dynamic analysis results are compared with electric vehicle simulation model in some parameters such as vehicle speed/acceleration, and propulsion forces.

Excitation Force Analysis of a Powertrain Based on CAE Technology (CAE를 이용한 파워트레인의 가진력 해석)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.107-116
    • /
    • 2008
  • The excitation force of a powertrain is one of major sources for the interior noise of a vehicle. This paper presents a novel approach to predict the interior noise caused by the vibration of the power rain by using the hybrid TPA (transfer path analysis) method. Although the traditional transfer path analysis (TPA) is useful for the identification of powertrain noise sources, it is difficult to modify the structure of a powertrain by using the experimental method for the reduction of vibration and noise. In order to solve this problem, the vibration of the power rain in a vehicle is numerically analyzed by using the finite element method (FEM). The vibration of the other parts in a vehicle is investigated by using the experimental method based on vibrato-acoustic transfer function (VATF) analysis. These two methods are combined for the prediction of interior noise caused by a power rain. Throughout this research, two papers are presented. This paper presents a simulation of the excitation force of the power rain exciting the vehicle body based on numerical simulation. The other paper presents a prediction of interior noise based on the hybrid TPA, which uses the VATF of the car body and the excitation force predicted in this paper.

Prediction of Interior Noise by Excitation Force of Powertrain Based on Hybrid Transfer Path Analysis (Hybrid TPA를 이용한 파워트레인 구조기인 실내소음 예측)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.117-124
    • /
    • 2008
  • In early design stage, the simulation of interior noise is useful for the enhancement of the noise, vibration and harshness (NVH) performance in a vehicle. The traditional transfer path analysis (TPA) technology cannot simulate the interior noise since it uses the experimental method. In order to solve this problem, in this paper, the hybrid TPA is developed as the novel approach. The hybrid TPA uses the simulated excitation force as the input force, which excites the flexible body of a car at the mount point, while the traditional TPA uses the measured force. This simulated force is obtained by numerical analysis for the FE (finite element) model of a powertrain. The interior noise is predicted by multiplying the simulated force by the vibro-acoustic transfer function (VATF) of the vehicle. The VATF is the acoustic response in the compartment of a car to the input force at the mount point of the powertrain in the flexible car body. The trend of the predicted interior noise based on the hybrid TPA very well corresponds to the measured interior noise, although there is some difference due to not only the experimental error and the simulation error but also the effect of the air-borne path.

Development of the Object-oriented Powertrains Dynamic Simulation Program (객체지향 동력전달계 동적 시물레이션 프로그램 개발 연구)

  • Han, Hyung-Suk;Lee, Jai-Kyung;Kim, Hyun-Soo;Lim, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.693-698
    • /
    • 2003
  • The application of object-oriented modeling to develop a powertrain performance simulation program, called P-DYN, is introduced. Powertrain components, such as the engine, transmission, shaft, clutch are modeled as classes which have data and method by using object-oriented modeling methodology. P-DYN, a performance simulation program, based on the object-oriented modeling is made in C++. One powertrain example is simulated through the P-DYN. It is expected that the simulation program or individual class constructed in this paper would be useful for automotive engineers in predicting the performance of powertrains and developing a simulation program.

  • PDF

A Study on the Vehicle Dynamic Characteristics Considering Powertrain and Brake Systems (동력전달계와 제동계를 고려한 차량의 운동 특성에 관한 연구)

  • Bae, Sang-Woo;Lee, Chi-Bum;Yun, Jung-Rak;Lee, Jang-Moo;Tak, Tae-Oh
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.684-689
    • /
    • 2000
  • In this paper, the equations of motion about vehicle, powertrain and brake system were derived. The vehicle has eight degrees of freedom with nonlinear tire model and the powertrain has two degrees of freedom containing engine, torque converter and four speed automatic transmission. The brake system has two states about front and rear brake line pressures. The transient tire model with first order time lag is also subjoined for low speed or stop-and-go simulation. The modeling was derived considering two points - the fidelity and the simplicity. The simulation using this model is similar with real vehicle dynamic behavior and the model is made as simple as possible far fast simulation. It is validated that the derived vehicle model can be applicable to the real time simulation.

  • PDF

Modeling of the Powertrain System and the Vehicle Body for the Analysis of the Driving Comfortability (승차감 해석을 위한 동력전달계와 차량계의 모델링)

  • Park, Jin-Ho;Lee, Jang-Mu;Jo, Han-Sang;Gong, Jin-Hyeong;Park, Yeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.926-936
    • /
    • 2000
  • Actual and strict definition of the shift quality for the powertrain system equipped an automatic transmission must be understood through the acceleration change of the vehicle body, which the driver directly feels as a shift shock. For this reason, it is necessary to concurrently analyze the characteristics of the powertrain system and the vehicle body. This paper presents the mathematical model of the vehicle body, which is based on the equivalent lumped system, to append to the developed model of the powertrain system. The concept of tire slip is also introduced for the experimental relationship between tire/road and driving force. Using the developed dynamic simulation programs, shift transients characteristics are analyzed. Theoretical results are compared with experimental ones from real car tests in equal conditions in order to prove the validity of presented model. In these tests, the system to measure the vehicle acceleration is used with various speeds and engine throttle sensors. It is expected that the presented modeling techniques can provide good predictions of the vehicle driving comfortability.