• 제목/요약/키워드: Mechanical Polishing

검색결과 768건 처리시간 0.032초

실리콘 웨이퍼 연마에서의 Break-in 모니터링 (Monitoring of Break-in time in Si wafer polishing)

  • 정석훈;박범영;박성민;이상직;이현섭;정해도;배소익;최은석;백경록
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.360-361
    • /
    • 2005
  • Rapid progress in IC fabrication technology has strong demand in polishing of silicon wafer to meet the tight specification of nanotopography and surface roughness. One of the important issues in Si CMP is the stabilization of polishing pad. If a polishing pad is not stabilized before main Si wafer polishing process, good polishing result can not be expected. Therefore, new pad must be subjected into break-in process using dummy wafers for a certain period of time to enhance its performance. After the break-in process, the main Si wafer polishing process must be performed. In this study, the characteristics of break-in process were investigated in Si wafer polishing. Viscoelastic behavior, temperature variation of pad and friction were measured to evaluate the break-in phenomenon. Also, it is found that the characteristic of the break-in seems to be related to viscoelastic behavior of pad.

  • PDF

전자재료 표면의 무결함 연마를 위한 화학기계적 균형 (Chemical and Mechanical Balance in Polishing of Electronic Materials for Defect-Free Surfaces)

  • 정해도;이창석;김지윤
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.7-12
    • /
    • 2012
  • Chemical mechanical polishing(CMP) technology is faced with the challenge of processing new electronic materials. This paper focuses on the balance between chemical and mechanical reactions in the CMP process that is required to cope with a variety of electronic materials. The material properties were classified into the following categories: easy to abrade(ETA), difficult to abrade(DTA), easy to react(ETR) and difficult to react(DTR). The chemical and mechanical balance for the representative ETA-ETR, DTA-ETR, ETA-DTR and DTA-DTR materials was considered for defect-free surfaces. This paper suggests the suitable polishing methods and examples for each electronic material.

화학기계적 연마 가공에서의 윤활 특성 해석 (Analysis of the Lubricational Characteristics for Chemical-Mechanical Polishing Process)

  • 박상신;조철호;안유민
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.90-97
    • /
    • 1999
  • Chemical-Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active, abrasive containing slurry. CU process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves tribology. The liquid slurry is trapped between the wafer (work piece) and pad (tooling) forming a lubricating film. For the first step to understand material removal rate of the CMP process, the lubricational analyses were done with commercial 100mm diameter silicon wafers to get nominal clearance of the slurry film, roll and pitch angle at the steady state. For this purpose, we calculate slurry pressure, resultant forces and moments at the steady state in the range of typical industrial polishing conditions.

MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석 (Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing)

  • 이정원;조명우;하석재;홍광표;조용규;이인철;김병민
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.

세라믹 입자를 이용한 자기연마가공 기술 사례 (Magnetic Abrasive Polishing Technology with Ceramic Particles)

  • 곽태수;곽재섭
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1253-1258
    • /
    • 2013
  • Ceramic particles as polishing abrasives are often used in a magnetic abrasive polishing process because they have strong wear resistance. Non-ferromagnetic ceramic abrasives should be mixed with ferromagnetic iron particles for controlling the mixture within a magnetic brush during the polishing process. This study describes the application of the ceramic particles for the magnetic abrasive polishing. The distribution of the magnetic abrasives attached on a tool varies with magnetic flux density and tool rotational speed. From the correlation between abrasive adhesion ratio in the tool and surface roughness produced on a workpiece, practical polishing conditions can be determined. A step-over for polishing a large sized workpiece is able to be selected by a S curve, and an ultrasonic vibration assisted MAP produces a better surface roughness and increases a polishing efficiency.

실리카 슬러리에 첨가된 알루미나가 Langasite의 기계.화학적 연마에 미치는 영향 (Effect of Alumina Addition tn the Silica Slurry on the Chemical Mechanical Polishing of Laugasite)

  • 장영일;윤인호;임대순
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.263-268
    • /
    • 1999
  • Langasite, a new piezoelectric material was polished by CMP(chemical mechanical polishing). To enhance the polishing rate, alumina abrasives were added to commercial ILD1300 slurry which contains silica abrasive. The effect of added alumina 0 the silica slurry on the polishing rate and damage of langasite was investigated, Experimental results show that the polishing rate and roughness increases with increasing added alumina particle size, Crystallinity of the langasite is also lowered by alumina addition.

  • PDF

Silicon/Pad Pressure Measurements During Chemical Mechanical Polishing

  • Danyluk, Steven;Ng, Gary;Yoon, In-Ho;Higgs, Fred;Zhou, Chun-Hong
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.433-434
    • /
    • 2002
  • Chemical mechanical polishing refers to a process by which silicon and partially-processed integrated circuits (IC's) built on silicon substrates are polished to produce planar surfaces for the continued manufacturing of IC's. Chemical mechanical polishing is done by pressing the silicon wafer, face down, onto a rotating platen that is covered by a rough polyurethane pad. During rotation, the pad is flooded with a slurry that contains nanoscale particles. The pad deforms and the roughness of the surface entrains the slurry into the interface. The asperities contact the wafer and the surface is polished in a three-body abrasion process. The contact of the wafer with the 'soft' pad produces a unique elastohydrodynamic situation in which a suction force is imposed at the interface. This added force is non-uniform and can be on the order of the applied pressure on the wafer. We have measured the magnitude and spatial distribution of this suction force. This force will be described within the context of a model of the sliding of hard surfaces on soft substrates.

  • PDF

습식자기연마(WMAP)에서 입자의 구속과 가공효과에 관한 연구 (Study on Abrasive Adhesion and Polishing Effect in Wet Magnetic Abrasive Polishing)

  • 손출배;진동현;곽재섭
    • 대한기계학회논문집A
    • /
    • 제38권8호
    • /
    • pp.887-892
    • /
    • 2014
  • 일반적인 자기연마가공에서 브러쉬는 연마입자와 자성입자 그리고 약간의 절삭유가 혼합되어 형상을 갖춘다. 그러나 공구가 고속으로 회전하게 되면 대부분의 연마입자는 원심력의 증가로 공구에서부터 떨어져나간다. 이러한 현상은 가공 효율을 저하시키는 결과를 야기한다. 이러한 문제점을 해결할 수 있는 방법 중 하나는 절삭유 대신에 실리콘 겔과 같은 고점성의 물질을 사용하여 입자의 구속을 증가시키는 것이다. 연마입자의 과도한 탈락에 대응하는 또 다른 방법은 습식자기연마(WMAP)이다. 습식자기연마는 절삭유가 공작물의 표면에 충분히 공급된 상태의 자기연마를 의미한다. 본 연구에서는 습식자기연마에서 구속된 연마입자의 구속량과 표면거칠기 향상의 상관관계를 분석하였다. 그 결과 습식자기연마에서 연마입자의 구속률이 낮음에도 불구하고 표면거칠기가 더 많이 향상됨을 알 수 있었다.

자기유변유체를 활용한 연마공정에 대한 기초연구 (A Preliminary Study on Polishing Process using Magnetorheological Fluid)

  • 황봉하;민병권;이상조;석종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.464-467
    • /
    • 2005
  • Among several polishing techniques for micro structures, polishing process using magnetorheological(MR) fluid has advantages in the finishing process of 3-D micro structures because abrasives in the fluid can reach surfaces with complex feature and play their role. Although many researchers have been trying to reveal its polishing mechanism of the MR polishing, it has not been successful because in-situ measurement of state variables is difficult and process parameters are complex. In fact, one of the key factors for applying process control methodologies, such as Run-to-Run control, is the measuring and monitoring of slurry quality because the process strongly depends on the fluid property. Therefore, it is necessary to maintain consistent slurry quality to guarantee the process repeatability. The proposed equipment achieves the longer life cycle of MR fluid and reduces the variability of products. A new method to measure the material removal rate in MRF polishing process is also proposed and discussed.

  • PDF

전방향 이동 메커니즘을 적용한 콘크리트 폴리싱 로봇의 성능평가 (Performance Evaluation of Concrete Polishing Robot with Omnidirectional Mobile Mechanism)

  • 조강익;주백석
    • 한국생산제조학회지
    • /
    • 제25권2호
    • /
    • pp.112-117
    • /
    • 2016
  • In the construction industry, concrete polishing is used to grind and rub the surface of concrete grounds with polishing machines to increase the strength of the concrete after deposition. Polishing is performed manually in spite of the generation of dust and the requirement of frequent replacements of the polishing pad. The concrete polishing robot developed in this research is a novel polishing automation system for preventing the workers from being exposed to poor working environments. This robot is able to change multiple polishing tools automatically; however, the workers can conveniently replace the worn-out polishing pads with new ones. The mobile platform of the polishing robot employs omnidirectional wheels to enable a flexible motion even in small and complicated workspaces. To evaluate the performance of the developed concrete polishing robot, extensive experiments including square trajectory tracking, automatic tool changing, actual polishing, and path generation simulation were performed.