• 제목/요약/키워드: Mechanical Pipe

검색결과 1,567건 처리시간 0.026초

루프형 세관 히트 파이프의 열전달특성에 관한 연구 (A Study on the Heat Transfer Characteristics of Loop Type Capillary Heat Pipe)

  • 윤석훈;최재혁
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.346-353
    • /
    • 2000
  • In this paper, heat transfer characteristics of a loop type capillary heat pipe were experimentally investigated for the effect of several fill charge ratios of working fluid and heat loads. This type of heat pipe consists of a heating section, a cooling section and an adiabatic section. The heat pipe used has a 0.002m internal diameter, a 0.34m length in one turn and consists of 19 turns. Heating and cooling sections each have a length of 70mm. Experiments were performed to measure the temperature distributions and the pressure variation of the heat pipe. Heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients were calculated for various operating conditions of heat pipe and it was found that heat transfer characteristics of this type heat pipe were very excellent. As shown by this experimental study, this type of heat pipe operates by oscillatory flow caused by pressure and temperature oscillations.

유체유동을 갖는 외팔 파이프의 동특성 및 진동수에 미치는 설계인자의 영향 (Influence of Design Parameters on Dynamic Behavior and Frequencies of Cantilever ripe Conveying Fluid)

  • 윤한익;손인수;박일주
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1815-1823
    • /
    • 2003
  • The vibrational system of this study consists of a cantilever pipe conveying fluid, the moving masses upon it and having an attached tip mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity and the inertia force of the moving mass and the velocities of fluid flow in the pipe have been studied on the dynamic behavior and the natural frequency of a cantilever pipe by numerical method. The deflection of the cantilever pipe conveying fluid is increased due to the tip mass and rotary Inertia. After the moving mass passed upon the cantilever pipe, the amplitude of pipe is influenced by energy variation when the moving mass fall from the cantilever pipe. As the moving mass increase, the frequency of the cantilever pipe conveying fluid is increased. The rotary inertia of the tip mass influences much on the higher frequencies and vibration mode.

Manufacturing and Temperature Measurements of a Sodium Heat Pipe

  • 이병인;이성홍
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1533-1540
    • /
    • 2001
  • A high-temperature sodium stainless steel heat pipe was fabricated and its performance has been investigated. The working fluid was sodium and it was sealed inside a straight tube container made of stainless steel. The amount of sodium occupied approximately 20% of the total volume of the heat pipe and its weight was 65.7gram. The length of a stainless steel container is 1002mm and its outside diameter is 25.4mm. Performance tests were carried out in a room air condition under a free convective environment and the measured temperatures are presented. The start-up behavior of the heat pipe from a frozen state was investigated for various heat input values between 600W and 1205W. In steady state, axial temperature distributions of a heat pipe were measured and its heat transfer rates were estimated in the range of vapor temperature from 50$0^{\circ}C$ to 63$0^{\circ}C$. It is found that there are small temperature differences in the vapor core along the axial direction of a sodium heat pipe for the high operating temperatures. But for the range of low operating temperatures there are large temperature drops along the vapor core region of a sodium heat pipe, because a small vapor pressure drop makes a large temperature drop. The transition temperature was reached more rapidly in the cases of high heat input rate for the sodium heat pipe.

  • PDF

고체입자 충돌침식으로 인한 배관 재질의 손상에 관한 연구 (A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion)

  • 김경훈;최덕현;김형준
    • Corrosion Science and Technology
    • /
    • 제13권4호
    • /
    • pp.130-138
    • /
    • 2014
  • Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor-based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.

직경이 작은 원자력배관의 파단전누설 해석에 미치는 노즐의 영향 (Effect of Nozzle on LBB Evaluation for Small Diameter Nuclear Piping)

  • 유영준;김영진
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1872-1881
    • /
    • 1996
  • LBB(Leak-Before-Break) analysis is performed for the highest stress location of each different type of mateerials in the nuclear piping line. In most cases, the highest stress occurs in the pipe and nozzle interface location. i.e. terminal end. The current finite element analysis approach utilizes the symmetry condition both for locations near the nozzle and for locationa away from the nozzle to minimize the size of the finite element model and to make analysis simple when calculating the J-integral values at the crack tip. In other words, the nozzle is not included in the finite element model. However, in reality, the symmetric condition is not applicable for the pipe-nozzle interface location. Because the pipe-nozzle interface location is asymmetric due to different stiffenss of the pipe and nozzle(both material and dimensions). The simplified analysis approach for pipe-nozzle interface locaiton is too conservative for a smaller diameter piping. In tlhis paper, various analyses are performed for the range of materials and crack sizes to evaluate the nozzle effect for a LBB anlaysis. This paper presents methodology for developing the piping evaluaiton diagram at the pipe-nozzle interface location.

자동차 배기성능개선을 위한 확장형 공동파이프에 관한 연구 (A Study on the Expansion Cavity Pipe for Performance Improvement of Exhaust System in Automotive)

  • 손성만;박경석
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.1-6
    • /
    • 2009
  • The temperature of exhaust gas was raised by increasing of engine movement on developing engine. Thermal of high temperature and pressure reverse in bellows, because of increasing of engine movement and the thermal performance of converter in combustion. As a result, thermal loss is increased and thermal efficiency is decreased rapidly in bellows, it can occur to damage in mechanical structure. In this study, it was necessary to analyze back pressure performance and thermal characteristic on driving condition in exhaust system. It was adapted braid type bellows and straight type exhaust pipe. It was compared with curve type exhaust pipe for lay-out on considering to design of exhaust system. It was necessary to improve thermal characteristic and back pressure performance so that expansion cavity pipe(ECP) was installed between bellows and catalyst convert. Not only decreasing back pressure was solved but also thermal characteristic problems in exhaust pipe because of increasing capacity. According to this study, the basis of data is presented when new exhaust system is designed.

열원이 바뀌는 고온용 히트파이프의 천이 과정 동작에 관한 수치적 연구 (A numerical study on the transient operation of high temperature heat pipe with a switching heat source)

  • 박종흥;이재헌
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.68-78
    • /
    • 1997
  • A numerical study on the transient vapor flow and heat transfer is performed to investigate the ideal switching operation of heat source in a high temperature heat pipe. The cylindrical 2-dimensional compressible laminar vapor flow is assumed for the vapor space and the conjugate heat transfer for the heat pipe wall, wick and vapor space is calculated. The different boundary conditions such as constant heat flux, convective or radiative boundary at the outer wall are used respectively to compare the influence of boundary conditions on the transient operation. The transient temperature profile and the internal flow of the entire pipe for the switching operation are described as a result. The results show that the transient time is not significantly affected by the boundary conditions at the outer wall in present study. During the transition, two independent flows are observed temporarily on the right side and left side of the heat pipe. It is also found that the trend of temperature variation in the vapor region is different from the variation in the wick and wall region.

Crawling 방식을 이용한 관 탐사용 소형 로봇의 이동속도 해석 (Theoretical Velocity Analysis of Micro Robot Based on Crawling Locomotive Mechanism for Pipe Inspection Micro Robot)

  • 장기현;박현준;김병규
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.633-641
    • /
    • 2008
  • Recently, the necessity for diagnosis and management of pipes has emerged as the issue due to contamination of water supply generated by corrosion of pipes. Although inspection has been performed with industrial endoscopes, the method has limits for full diagnosis of pipes due to the lack of working range. As a solution for this problem, many locomotive mechanisms for a micro robot with endoscope functions were proposed. In this paper, we analyze the locomotive mechanism of crawling robot proposed as locomotive device for pipe inspection. Based on a mechanical modeling of motor and micro robot inside small pipe, the theoretical formula for velocity is obtained. This derived theoretical formula is demonstrated the feasibility through the comparison with experimental result. Also, we could find the most important element influencing the moving velocity of micro robot when the robot operates in small pipe. Consequently, it is expected that this study can supply useful information to design of crawling robot to move in small pipe.

전산유체역학을 이용한 직접 접촉식 히트파이프의 응축부 형상에 따른 성능비교 (Performance Comparison on the Condenser Shapes of Direct Contact Heat Pipe using CFD)

  • 고요한;강경문;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.203-208
    • /
    • 2008
  • The purpose of this study is to compare the different shapes of condenser of the direct contact heat transfer from the heat pipe condenser to the receiving water using CFD. The heat transfer from the working fluid of the heat pipe to receiving fluid flows through the manifolder is one of the important part in evacuated solar collector system. The retrenchment of the thermal resistance between the heat pipe and the manifolder could increase the thermal performances of the whole system. Recently, direct heat transfer from the heat pipe condenser wall to the receiving water was suggested and accompanied experiments were achieved. This experiment shows the better performances of the direct contact heat transfer analogically. Preceding calculations are carried out for the performance comparison: mesh dependence test, discretization method test and equation model test. with these preceding tests, 4 different shapes of condenser are compared and each case were set up for the same heat flux at the condenser wall. The calculation result shows that the efficiency of the extended surface condenser shape is 10% higher then the that of the others.

  • PDF

A Study on the Heat Transfer Characteristics of a Self-Oscillating Heat Pipe

  • Yoon, Seok-Hun;Cheol Oh;Park, Jae-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.354-362
    • /
    • 2002
  • In this paper, the heat transfer characteristics of a self-oscillating heat pipe are experimentally investigated for the effect of various working fluid fill charge ratios and heat loads. The characteristics of temperature oscillations of the working fluid are also analysed based on chaotic dynamics. The heat pipe is composed of a heating section, a cooling section and an adiabatic section, and has a 0.002m internal diameter, a 0.34m length in each turn and consists of 19 turns. The heating and the cooling portion of each turn has a length of 70mm. A series of experiments was carried out to measure the temperature distributions and the pressure variations of the heat pipe. Furthermore, heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients are calculated for various operating conditions. Experimental results show the efficacy of this type of heat pipe.