• 제목/요약/키워드: Mechanical Neck

검색결과 208건 처리시간 0.022초

Computational Analysis of Impulse Forces Affecting Coil Compaction in Cerebral Aneurysms

  • Cha Kyung-Se;Balaras Elias
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권3호
    • /
    • pp.94-100
    • /
    • 2006
  • The effectiveness of the treatment of intracranial aneurysms with endovascular coiling depends on coil packing density, the location of aneurysm, its neck dimensions with respect to the aneurysm dome, and its size with respect to the surrounding tissue. Clinical data also suggests that the aneurysm neck size is the main predictor of aneurysm recanalization. In this study, the force impinging on the aneurysm neck in an idealized aneurysm was calculated by using a three dimensional finite volume method for the non-Newtonian incompressible laminar flow. To quantify the effect of neck size on the impingement force, calculations were performed for aneurysm neck diameters (Da) varying from 10% to 100% of the parent artery diameter (Dp). Also, maximum impingement forces were represented by a function of the ratio of the aneurysm neck to the diameter of the parent vessel. The results show that the hemodynamic forces exerted on the coil mass at the aneurysm neck due to the pulsatile blood flow are larger for wide necked aneurysms.

넙다리뼈 머리/목 부분 해면뼈의 기계적 물성 (Mechanical Properties of Trabecular Bone in femoral Head & Neck)

  • 곽대순;최광남;김상국;이상호;김태중;한승호;오택열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.518-521
    • /
    • 2005
  • We performed the mechanical test for obtaining properties of femoral head. Tested sample was male and 35 years old. We measured bone mineral density by dual X-ray absorption method(DEXA). Results of DEXA, he has normal condition of bone density. His BMD $1.159g/cm^2$ and T-Score is 1.6. Tested femurs were harvested by surgical method from donated cadaver. We made 9 specimens in femoral head, 8 specimens in neck used by diamond core drill. Then we performed compressive test in saline solution at $38^{\circ}C$. We obtained results that elastic modulus of femoral head was 0.439GPa, neck was 0.459GPa. Compressive strength of femoral head was 7.441 MPa, neck was 7.095MPa. There was no significant difference of mechanical properties between left and right femoral head & neck. Invested local properties of femoral head have more strength superior and anterior side, femoral neck has more strength in superior and inferior side but other side except for superior has more weakness along the lateral side.

  • PDF

유한요소법을 이용한 type 4 수소저장용기용 고정 장치의 구조적 안전성 분석에 관한 연구 (A Study on the Structural Safety Analysis of Neck Mount Block of Type 4 Hydrogen Storage Vessel by Finite Element Method)

  • 김건우;김혜원;박한민;이정호;윤수진;이한수;김종열;이석진;유계형;윤영길;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.195-204
    • /
    • 2024
  • The study involves a finite element analysis to evaluate the structural integrity of the neck mount block for a type 4 hydrogen storage vessel, with the aim of enhancing its strength and rigidity. The existing neck mount block consists of a fixed part and a sliding part, each comprising a body block for load support, a screw part for neck boss fixation, and bolts. To analyze the vulnerabilities of the neck mount block under bolt fastening and load conditions relative to vehicle travel directions, a structural analysis process was developed. Comparative analysis between the enhanced design and the existing model was performed, resulting in improved strength and rigidity. The objective is to provide guidance for the current product development and to offer fundamental data for the design and structural analysis of future development projects.

목상해 분석을 위한 상세 유한요소 목모델 개발 - 저속후방 오프셋 충돌에 따른 분석 - (Development of a Finite Element Human Neck Model for Neck Injury Analysis - Application to Low Speed Rear-End Offset Impacts -)

  • 김영은;조휘창
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.913-920
    • /
    • 2005
  • Compared to previous in-vitro test, FE model showed reliable motion patterns. A finite element model of a 50th percentile male neck was developed to study the mechanics of whiplash injury while the rear impacts. The model was consisted of the whole cervical vertebrae including part of occipital, intervertebral discs. which were modeled using linear viscoelastic materials and posterior elements. The sliding interfaces were defined to simulate contact phenomena in facet joints and in odontoid process. All ligaments and atlanto-occipital membrane were modeled as nonlinear bar elements. Only muscle elements were not considered. Motion of each cervical vertebra was obtained from the dynamic simulation with a MADYMO model for 15 km/h $40\%$ rear end offset impacts. Soft tissue neck injury(STNI) was investigated with a developed FE model. In FE model analysis, the high stress was appeared at C3/C4 disc in offset impact. Further research is still needed in order to improve the developed neck FE model for many different crash patterns.

Numerical Study on Aneurysmal Blood Flow After Coil Embolization

  • Kyehan Rhee;Jeong, Woo-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권1호
    • /
    • pp.42-46
    • /
    • 2004
  • Aneurysm embolization method using coils has been widely used. When partial blocking of an aneurysm is inevitable, the locations of coils are important since they change the flow patterns inside the aneurysm, which affect the embolization process. We calculated the flow fields inside the partially blocked lateral aneurysm models for different coil locations-proximal neck, distal neck, proximal dome and distal dome. Flow into the aneurysm sac was significantly reduced in the distally blocked models, and coils at the distal neck blocked inflow more effectively comparing to those at the distal dome. This study suggests that the distal neck should be the most effective location for aneurysm embolization.

Analysis of Human Neck Loads During Isometric Voluntary Ramp Efforts: EMG-Assisted Optimization Modeling Approach

  • Choi, Hyeon-Ki
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.338-349
    • /
    • 2000
  • Neck muscle forces and spinal loads at the C4/5 level were estimated that result from isometric voluntary ramp efforts gradually developing to maximums in flexion, extension, left lateral bending and right lateral bending. Electromyographic (EMG) activities, a three-dimensional anatomic data of the neck and a hybrid model, EMG-assisted optimization (EMGAO) model, were used. The model computed the cervical loads at 25%,50%,75%, and 100% of peak moments. The highest model-predicted C4/5 joint compressive forces occurred during flexion; $361\;({\pm}164)\;N,\;811\;({\pm}288)\;N,\;1207\;({\pm}491)\;N\;and\;1674\;({\pm}319)\;N$ in 25%, 50%, 75% and 100% of peak moment respectively. Variations in load distribution among the agonistic muscles and co-contractions of antagonistic muscles were estimated during ramp efforts. Results suggest that higher C4/5 joint loads than previously reported are possible during isometric, voluntary muscle contractions. These higher physiological loads at C4/5 level must be considered possible during orthopedic reconstruction at this level.

  • PDF

Shape memory alloy (SMA)-based head and neck immobilizer for radiotherapy

  • Lee, Hyun-Taek;Kim, Sung-In;Park, Jong Min;Kim, Ho-Jin;Song, Dae-Seob;Kim, Hyung-Il;Wu, Hong-Gyun;Ahn, Sung-Hoon
    • Journal of Computational Design and Engineering
    • /
    • 제2권3호
    • /
    • pp.176-182
    • /
    • 2015
  • Head-and-neck cancer is often treated with intensive irradiation focused on the tumor, while delivering the minimum amount of irradiation to normal cells. Since a course of radiotherapy can take 5-6 weeks or more, the repeatability of the patient posture and the fastening method during treatment are important determinants of the success of radiotherapy. Many devices have been developed to minimize positional discrepancies, but all of the commercial devices used in clinical practice are operated manually and require customized fixtures for each patient. This is inefficient and the performance of the fixture device depends on the operator's skill. Therefore, this study developed an automated head-and-neck immobilizer that can be used during radiotherapy and evaluated the positioning reproducibility in a phantom experiment. To eliminate interference caused by the magnetic field from computed tomography hardware, Ni-Ti shape-memory alloy wires were used as the actuating elements of the fixtures. The resulting positional discrepancy was less than 5 mm for all positions, which is acceptable for radiotherapy.

급성 역학적 경부 통증 환자에서 관절가동술적용 자세가 경부 통증과 기능과 치료만족도에 미치는 영향 (Effects of Two Different Joint Mobilization Positions on Neck Pain, Function and Treatment Satisfaction in Patient with Acute Mechanical Neck Pain)

  • 이남용;송현승;김선엽
    • 대한물리의학회지
    • /
    • 제10권4호
    • /
    • pp.69-80
    • /
    • 2015
  • PURPOSE: The purpose of the present study was to apply joint mobilization in a sitting position and in a prone position to patients with acute mechanical neck pain and compare the immediate treatment effects in these two positions. METHODS: After the baseline was assessed, 46 patients were randomly assigned to two groups: experimental group I ($n_1=23$) for joint mobilization in the sitting position and experimental group II ($n_2=23$) for joint mobilization in the prone position at the symptomatic cervical level. The patients in both groups received treatment by unilateral posterior-anterior gliding for 30 seconds per trial, 10 trials per session, for a total of 5 minutes, and two trials of 10 active extending motions with distraction per trial. RESULTS: In the Wilcoxon signed-rank test, all the pain and physical function variables were significantly improved after intervention in both groups (p<.05). In the Mann-Whitney U test, which compared the differences before and after the intervention between the two groups, experimental group I showed significant improvement over experimental group II in resting pain (p<.01), satisfaction with the treatment (p=.01), left rotation (p<.01) and CCFE (p<.01). In the analysis of covariance results, experimental group I showed significant improvement over experimental group II in the most painful motion pain (p<.01) and the most painful quadrant motion pain (p<.01). CONCLUSION: These outcomes suggest that joint mobilization should be applied in sitting positions for patients with acute mechanical neck pain that feel pain during sustained positions, extension or rotation.

치료사에 의해 적용된 경피신경전기자극과 가정에서 시행된 경피신경전기자극이 경부통 환자의 통증과 장애에 미치는 영향 (The Effect of TENS by Physiotherapist versus Home based TENS Intervention to reduce Pain and Improve Disability in Patients with Mechanical Neck Disorder)

  • 박재명;양성화;이준용;이재민;정민근
    • 대한정형도수물리치료학회지
    • /
    • 제16권2호
    • /
    • pp.61-66
    • /
    • 2010
  • Purpose: The purpose of this study was to determine the effect of TENS by physiotherapist versus home based TENS intervention to reduce pain and improve disability in patients with mechanical neck disorder. Methods: The subjects of the study were 30 selected patients who had been diagnosed with subacute or chronic neck disorders without neurological damage, during the period of four weeks, three times a week, and thirty minutes for one session, 15 patients received TENS by physiotherapist. 15 patients received home based TENS intervention. The primary outcome was pain intensity measured in using the Visual Analog Scale(VAS). The second outcome was Neck Disability Index to patient's disability. Results: The change in the pain perception degree were statistically significant in both group(p<0.05). TENS by physiotherapist group showed significantly improvement in disability, but, Home based TENS intervention group is not. TENS by physiotherapist group showed significantly greater improvement in pain intensity and patient's disability than the home based TENS intervention group. Conclusion: This study shows that received TENS by physiotherapist was effective in reducing pain, improving disability for mechanical neck disorder patient, physiotherapist' knowledge need to improve patient's pain and disability.

  • PDF

파라메트릭 형상모델을 이용한 근위 대퇴골의 경부 골절 영향 해석 (Analysis on Femoral Neck Fractures Using Morphological Variations)

  • 이호상;박병건;채제욱;김재정
    • 비파괴검사학회지
    • /
    • 제31권5호
    • /
    • pp.459-465
    • /
    • 2011
  • 대퇴골 근위부의 기하학적 형상은 대퇴골 경부 골절과 중요한 상관관계를 가지고 있는 것으로 보고되고 있다. 기존의 연구에서는 인장실험법과 유한요소해석법을 이용하여 상관관계를 분석해왔다. 그러나 이 방법들은 인체의 미리 정의된 대퇴골 형상을 변경할 수 없고, 다수의 시험편들을 확보하기 어렵기 때문에 다양한 시험편과 모델을 적용할 수 없다는 한계가 있다. 따라서 본 연구에서는 대퇴골 골절 해석에 폭넓게 사용할 수 있도록 매개변수로 기하학적 형상 변형이 가능한 대퇴골 모델을 이용하여 대퇴골 골절과 형상 매개변수의 관계를 분석하였다. 이 관계를 분석하기 위하여 4가지 주요 매개변수(대퇴골두 직경, 대퇴경부 직경, 대퇴경두간 길이, 대퇴경간각)를 이용하여 다양한 해석 모델을 생성하여 유한요소해석을 수행하였다. 이 후 대퇴골두에서의 반력(reaction force)과 경부에서의 응력 분포(stress distribution)를 분석함으로써 유한요 소해석을 수행하였고, 대퇴경부 직경이 대퇴골 경부 골절에 가장 큰 영향을 미치고 대퇴골두 직경이 가장 작은 영향을 미치는 결과가 나타났다.