• 제목/요약/키워드: Mechanical Model

검색결과 12,840건 처리시간 0.038초

기계식 충돌 센서의 성능 해석 (A Study on the Performance of Mechanical Crash Sensors)

  • 김권희
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.136-142
    • /
    • 1995
  • An analysis model is proposed for the performance prediction of typical ball and tube type mechanical crash sensors based upon mass-spring-viscous gas damping idealization. Also a construction of mechanical crash pulse generator is suggested as an experimental tool for calibration and verification of model predictions. A sensor tuning procedure for a particular set of crash pulses is suggested based upon the analysis model and the experimental tools.

  • PDF

A Lagrangian Stochastic Model for Turbulent Dispersion

  • Lee, Changhoon;Kim, Byunggu;Kim, Namhyun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1683-1690
    • /
    • 2001
  • A Lagrangian stochastic model is adopted for the calculations of turbulent dispersion in turbulent channel flows. Dispersion of a fluid particle and relative dispersion between two particles released at the sane location are investigated and compared with the classical seating relations for homogeneous turbulence. The viscous effect is realized by adding a Browinian random walk to the calculation of the position of a particle. The near-wall accumulation of particles is examined.

  • PDF

Vibration Suppression Control for a Twin-Drive Geared Mechanical System with Backlash: Effects of Model-Based Control

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1392-1397
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a twin-drive geared mechanical system. This technique is based on a model-based control in order to establish the damping effect at the driven machine part. The control model is composed of reduced-order electrical and mechanical parts. This control model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically and it is added to the velocity command to suppress the transient vibration generated at the load. This control technique is applied to a twin-drive geared system with backlash. In the previous work, the performance of this control method is examined by simulations. In this paper, the effectiveness of this control technique is verified by experiments. The settling time of the residual vibration generated at the loading inertia can be shortened down to about 1/2 of the uncompensated vibration level.

  • PDF

배기매니폴드의 열응력 해석을 위한 배기계 모델 구성에 관한 연구 (A Study on the Exhaust System Model for Thermal Stress Analysis of Exhaust Manifold)

  • 최복록;이경우;장훈
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.7-13
    • /
    • 2010
  • In this study, we investigated the efficient FE modelling techniques for thermal stress analysis of the exhaust manifold subject to thermo-mechanical cyclic loadings. At first, full engine model was considered to identify the critical locations and their results were compared to failure site shown by the engine bench test. And the equivalent system model was proposed based on the mechanical behavior of the full engine model. The weak areas of both FE models show a good agreement with the experimental crack location. As a result, a simplified modelling methodology was verified to estimate the thermo-mechanical behaviors of the exhaust manifold under thermal shock test condition.

A Theoretical Model of Critical Heat Flux in Flow Boiling at Low Qualities

  • Kim, Ho-Young;Kwon, Hyuk-Sung;Hwang, Dae-Hyun;Kim, Yongchan
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.921-930
    • /
    • 2001
  • A new theoretical critical heat flux (CHF) model was developed for the forced convective flow boiling at high pressure, high mass velocity, and low quality. The present model for an intermittent vapor blanket was basically derived from the sublayer dryout theory without including any empirical constant. The vapor blanket velocity was estimated by an axial force balance, and the thickness of vapor blanket was determined by a radial force balance for the Marangoni force and lift force. Based on the comparison of the predicted CHF with the experimental data taken from previous studies, the present CHF model showed satisfactory results with reasonable accuracy.

  • PDF

Three-Dimensional Flow Analysis and Improvement of Slip Factor Model for Forward-Curved Blades Centrifugal Fan

  • Guo, En-Min;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.302-312
    • /
    • 2004
  • This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient.

Vehicle Dynamic Simulation Including an Artificial Neural Network Bushing Model

  • Sohn, Jeong-Hyun;Baek-Woon-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.255-264
    • /
    • 2005
  • In this paper, a practical bushing model is proposed to improve the accuracy of the vehicle dynamic analysis. The results of the rubber bushing are used to develop an empirical bushing model with an artificial neural network. A back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra algorithm of 'NARMAX' form is employed to consider these effects. A numerical example is carried out to verify the developed bushing model. Then, a full car dynamic model with artificial neural network bushings is simulated to show the feasibility of the proposed bushing model.

A Study of the Propagation of Turbulent Premixed Flame Using the Flame Surface Density Model in a Constant Volume Combustion Chamber

  • Lee, Sangsu;Kyungwon Yun;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.564-571
    • /
    • 2002
  • Three-dimensional numerical analysis of the turbulent premixed flame propagation in a constant volume combustion chamber is performed using the KIVA-3V code (Amsden et. al. 1997) by the flame surface density (FSD) model. A simple near-wall boundary condition is eaployed to describe the interaction between turbulent premixed flame and the wall. A mean stretch factor is introduced to include the stretch and curvature effects of turbulence. The results from the FSD model are compared with the experimental results of schlieren photos and pressure measurements. It is found that the burned mass rate and flame propagation by the FSD model are in reasonable agreement with the experimental results. The FSD combustion model proved to be effective for description of turbulent premixed flames.

Modeling of Diesel Spray Impingement on a Flat Wall

  • Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권7호
    • /
    • pp.796-806
    • /
    • 2000
  • To understand the transient behavior of droplets after impingement in a diesel engine, a numerical model for diesel sprays impinging on a flat wall is newly developed by the proposition of several mathematical formulae to determine the post-impingement characteristics of droplets. The new model consists of three representative regimes such as rebound, deposition and splash. The gas phase is modeled in terms of the Eulerian conservation equations, and the dispersed phase is calculated using a discrete droplet model. To validate the new model, the calculated results are compared with several experimental data. The results show that the new model is generally in good agreement with the experimental data. Therefore, it is thought that the new model is acceptable for the prediction of transient behavior of wall sprays.

  • PDF

Information Dissemination Model of Microblogging with Internet Marketers

  • Xu, Dongliang;Pan, Jingchang;Wang, Bailing;Liu, Meng;Kang, Qinma
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.853-864
    • /
    • 2019
  • Microblogging services (such as Twitter) are the representative information communication networks during the Web 2.0 era, which have gained remarkable popularity. Weibo has become a popular platform for information dissemination in online social networks due to its large number of users. In this study, a microblog information dissemination model is presented. Related concepts are introduced and analyzed based on the dynamic model of infectious disease, and new influencing factors are proposed to improve the susceptible-infective-removal (SIR) information dissemination model. Correlation analysis is conducted on the existing information dissemination risk and the rumor dissemination model of microblog. In this study, web hyper is used to model rumor dissemination. Finally, the experimental results illustrate the effectiveness of the method in reducing the rumor dissemination of microblogs.