• 제목/요약/키워드: Mechanical Integrity

검색결과 791건 처리시간 0.023초

중수로 압력관 LBB 평가에서의 수소화물에 의한 취화거동 (Hydride Embrittlement Behavior at the LBB Evaluation of PHWR Pressure Tube)

  • 오동준;김영석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1192-1197
    • /
    • 2003
  • The aim of this study is to investigate the hydride embrittlement when the LBB evaluation is carried out for the integrity of PHWR Pressure Tubes. The transverse tensile and CCT tests were performed at three hydrogen concentrations while the test temperatures were changed (RT to $300^{\circ}C$). The specimens were directly machined from the pressure tube retaining original curvature. Both the transverse tensile and the fracture toughness tests showed the hydrogen embrittlement clearly at RT but this phenomenon was disappeared while the test temperature arrived over $250^{\circ}C$. Using the DHC test results, the CCL and LBB time were calculated and compared. The hydride embrittlement behavior at the LBB evaluation was definitely showed.

  • PDF

중첩된 알루미늄 판재의 셰이빙 전단접합에 관한 연구 (A Shaving Shear-Welding Process for Overlapped Aluminum Plates)

  • 상리동;김태현;진인태
    • 소성∙가공
    • /
    • 제21권8호
    • /
    • pp.467-472
    • /
    • 2012
  • Shaving shear-welding is a solid-state welding process, which utilizes plastic deformation of surplus material. The solid-state nature of this process contributes to high integrity and strength of the weld. The objective of this study was to investigate the effects of process variables on the material flow patterns and identify the process condition for obtaining the best weld. FEM simulations were carried out along with experimental characterizations. The results showed the importance of the cutter angles and the overlap lengths, and helped attain the optimum shaving shear-welding die and the best process condition.

Fabrication of Porous RBSN Ceramics with Aligned Channels by an Ice-Templating Method

  • 김동석;고재웅;김도경
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.97.1-97.1
    • /
    • 2012
  • Porous ceramics are widely used for applications such as catalysis supports, gas distributors and filters such as DPF. For these purpose, it is important to have proper porosity controlling pore structure while maintaining mechanical and thermal properties. In this work, we have prepared the porous ceramic structures made of reaction bonded silicon nitride with hierarchical pore structures. Uni-directionally aligned pore channels, which are mostly filled with ${\beta}$-Si3N4 whiskers, were achieved by an ice-templating method. The structures of the pore channels and the walls are controllable by the processing conditions, such as solid concentration, freezing rate of the slurry, and additives. We have investigated and characterized the influences of the conditions on the microstructures and the properties, such as porosity, pore size distribution, lamellar thickness, wavelength, and orientations. The compressive strength test and flow test was performed to determine the structural integrity and air permeability.

  • PDF

레이저용접부의 파괴에 미치는 잔류응력의 영향 (The Effect of residual stress for fracture behavior in the laser weldment)

  • 조성규;양영수
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2006년도 춘계학술발표대회 논문집
    • /
    • pp.3-8
    • /
    • 2006
  • The integrity of laser welded structures is decided with fracture strength and fatigue strength. This study presents fracture behavior considering residual stress in the laser welding. Experiments are conducted and analyses are performed to explore the influence of residual stress on fracture behavior of bead-on laser welded compact specimen. Fracture experiments are performed using ASTM 1820. The performed analyses included thermo-elasto-plastic analyses for residual stress and subsequent J-integral calculation. A modified J integral is calculated in the presence of residual stresses. The J-integral is path-independent for combination of residual stress field and stress due to mechanical loading. The results indicates that the tensile residual stress near crack front bring the low fracture load while the compressive residual stress bring the high fracture load compared to no residual stress specimen. These results quantitatively understand the influence of residual stress on fracture behavior.

  • PDF

고속 영구자석 동기 전동기의 손실 특성 (Characteristics of Power Losses in High-Speed Permanent Magnet Synchronous Motor)

  • 장석명;조한욱;최장영;고경진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.901-902
    • /
    • 2006
  • In high-speed PM machines, rotor losses form a larger proportion of the total losses than usual in conventional low speed machines. In order to maintain the mechanical integrity of a high-speed PM rotor intended for high-speed operation, the rotor assembly is often retained within a sleeve or can. The sleeve is exposed to field produced by the stator from either the slotting or the mmf harmonics that are not synchronous with the rotor. These non-synchronous fields cause the significant rotor losses. An optimum design of high-speed PM machines requires the accurate prediction for these rotor losses. On the basis of analytical field analysis and 2D finite element analysis (FEA), this paper deals with the rotor losses.

  • PDF

Structural performance of renovated masonry low bridge in Amasya, Turkey

  • Cakir, Ferit;Seker, Burcin S.
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1387-1406
    • /
    • 2015
  • Masonry bridges are the vital components of transportation systems. Although these bridges were constructed centuries ago, they have served a purpose from ancient times to the present day. However, the bridges have needed local renovation and therefore have been rebuilt over different periods in many places. This study focuses on Low Bridge, which is an example of renovated masonry bridges in Turkey. It essentially assesses the structural behavior of the masonry bridge and investigates the integrity of the renovated components. For this purpose, the mechanical properties of the bridge material have been primarily evaluated with experimental tests. Then the static, modal and nonlinear time history analyses have been carried out with the use of finite element methods in order to investigate the structural behavior of the current form of the bridge.

Treatment of Stainless Steel Cladding in Pressurized Thermal Shock Evaluation: Deterministic Analyses

  • Changheui Jang;Jeong, lll-Seok;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.132-144
    • /
    • 2001
  • Fracture mechanics is one of the major areas of the pressurized thermal shock (PTS) evaluation. To evaluate the reactor pressure vessel integrity associated with PTS, PFM methodology demands precise calculation of temperature, stress, and stress intensity factor for the variety of PTS transients. However, the existence of stainless steel cladding, with different thermal, physical, and mechanical property, at the inner surface of reactor pressure vessel complicates the fracture mechanics analysis. In this paper, treatment schemes to evaluate stress and resulting stress intensity factor for RPV with stainless steel clad are introduced. For a reference transient, the effects of clad thermal conductivity and thermal expansion coefficients on deterministic fracture mechanics analysis are examined.

  • PDF

연강의 습식 수중 아크 용접 특성에 관한 연구 (A Study on the Properties of Underwater Wet Arc Welding for the Mild Steels)

  • 곽희환;김창규
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.107-114
    • /
    • 2007
  • Underwater wet arc welds were experimentally performed on 11mm thick SS400 mild steel plate as base metal by using six different types of flux coated electrodes of 4.0mm diameter; KSKR, KSKT, USBL, JPUW, UWEA, and UWEB. As results, the developed flux coated underwater electrode had a good weldability compared with other domestic terrestrial electrodes. By rapid cooling rate, the hardness value of HAZ were increased by quenching effects. Mechanical properties for the multi-pass butt-welding specimen are also tested experimentally. The feasibility of the developed underwater electrode was experimentally studied and the results achieved in this wet arc welds have shown that the developed wet welding electrode UWEB can have a degree of integrity.

  • PDF

FATIGUE ANALYSIS OF A REACTOR PRESSURE VESSEL FOR SMART

  • Jhung, Myung-Jo
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.683-688
    • /
    • 2012
  • The structural integrity of mechanical components during several transients should be assured in the design stage. This requires a fatigue analysis including thermal and stress analyses. As an example, this study performs a fatigue analysis of the reactor pressure vessel of SMART during arbitrary transients. Using heat transfer coefficients determined based on the operating environments, a transient thermal analysis is performed and the results are applied to a finite element model along with the pressure to calculate the stresses. The total stress intensity range and cumulative fatigue usage factor are investigated to determine the adequacy of the design.

A Study on the Correlations Development for Film Boiling Heat Transfer on Spheres

  • Jeong, Yong-Hoon;Beak, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.437-442
    • /
    • 1998
  • Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling heat been performed. However, there is no available correlation adequate for severe accident analysis. In this study, boiling heat transfer correlations have been developed, and their applicable ranges heat been enlarged and their prediction accuracy has been enhanced.

  • PDF