• Title/Summary/Keyword: Mechanical Integrity

Search Result 789, Processing Time 0.026 seconds

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

Development of MATLAB GUI Based Software for Analysis of KASS Availability Performance (KASS 가용성 성능 평가를 위한 MATLAB GUI 기반 소프트웨어 설계)

  • Choi, Bong-kwan;Han, Deok-hwa;Kim, Dong-uk;Kim, Jung-beom;Kee, Chang-don
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.384-390
    • /
    • 2018
  • This paper introduces a MATLAB graphical user interface (GUI) based software for analysis of korea augmentation satellite system (KASS) availability performance. This software uses minimum variance (MV) estimator and Kriging algorithm to generate integrity information such as user differential range error (UDRE) and grid ionospheric vertical error (GIVE). The information is offered to ground and aviation users in Korean region. The software also gives accuracy data, protection level data and availability map about each user position by using the integrity information. In particular the software calculates the protection level along a path of aircraft. We verified the result of protection level of aviation user by comparing them with the results of SBASimulator#2, which is a simulation tool of european geostationary navigation overlay service (EGNOS). As a result, the protection level error between the result of our software and the SBASimulator#2 was about 2% which means that the result of our software is accurate.

Stress Intensity factor Calculation for the Axial Semi-Elliptical Surface Flaws on the Thin-Wall Cylinder Using Influence Coefficients (영향계수를 이용한 원통용기 축방향 표면결함의 응력확대계수의 계산)

  • Jang, Chang-Heui;Moon, Ho-Rim;Jeong, Ill-Seok;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2390-2398
    • /
    • 2002
  • For integrity analysis of nuclear reactor pressure vessel, including the Pressurized thermal shock analysis, the fast and accurate calculation of the stress intensity factor at the crack tip is needed. For this, a simple approximation scheme is developed and the resulting stress intensity factors for axial semi-elliptical cracks in cylindrical vessel under various loading conditions are compared with those of the finite element method and other approximation methods, such as Raju-Newman's equation and ASME Sec. Xl approach. For these, three-dimensional finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R = 0.1. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite clement analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. The approximation solutions are within $\pm$2.5% of the those of FEA using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the VINTIN method provides sufficiently accurate stress intensity factor values for axial semi-elliptical flaws on the surface of the reactor pressure vessel.

High-Temperature Design of Sodium-to-Air Heat Exchanger in Sodium Test Loop (소듐 시험루프 내 소듐대 공기 열교환기의 고온 설계)

  • Lee, Hyeong-Yeon;Eoh, Jae-Hyuk;Lee, Yong-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.665-671
    • /
    • 2013
  • In a Korean Generation IV prototype sodium-cooled fast reactor (SFR), various types of high-temperature heat exchangers such as IHX (intermediate heat exchanger), DHX (decay heat exchanger), AHX (air heat exchanger), FHX (finned-tube sodium-to-air heat exchanger), and SG (steam generator) are to be designed and installed. In this study, the high-temperature design and integrity evaluation of the sodium-to-air heat exchanger AHX in the STELLA-1 (sodium integral effect test loop for safety simulation and assessment) test loop already installed at KAERI (Korea Atomic Energy Research Institute) and FHX in the SEFLA (sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger) test loop to be installed at KAERI have been performed. Evaluations of creep-fatigue damage based on full 3D finite element analyses were conducted for the two heat exchangers according to the high-temperature design codes, and the integrity of the high-temperature design of the two heat exchangers was confirmed.

Impacts of Dopant Activation Anneal on Characteristics of Gate Electrode and Thin Gate Oxide of MOS Capacitor (불순물 활성화 열처리가 MOS 캐패시터의 게이트 전극과 산화막의 특성에 미치는 효과)

  • 조원주;김응수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.83-90
    • /
    • 1998
  • The effects of dopant activation anneal on GOI (Gate Oxide Integrity) of MOS capacitor with amorphous silicon gate electrode were investigated. It was found that the amorphous silicon gate electrode was crystallized and the dopant atoms were sufficiently activated by activation anneal. The mechanical stress of gate electrode that reveals large compressive stress in amorphous state, was released with increase of anneal temperature from $700^{\circ}C$ to 90$0^{\circ}C$. The resistivity of gate electrode polycrystalline silicon film is decreased by the increase of anneal temperature. The reliability of thin gate oxide and interface properties between oxide and silicon substrate greatly depends on the activation anneal temperature. The charge trapping characteristics as well as oxide reliability are improved by the anneal of 90$0^{\circ}C$ compare to that of $700^{\circ}C$ or 80$0^{\circ}C$. Especially, the lifetimes of the thin gate oxide estimated by TDDB method is 3$\times$10$^{10}$ for the case of $700^{\circ}C$ anneal, is significantly increased to 2$\times$10$^{12}$ for the case of 90$0^{\circ}C$ anneal. Finally, the interface trap density is reduced with relaxation of mechanical stress of gate electrode.

  • PDF

Integrated Fitness-for-service Program for Natural Gas Transmission Pipeline (천연가스 공급배관의 사용적합성 통합프로그램)

  • Kim, Woo-Sik;Kim, Young-Pyo;Kim, Cheol-Man;Baek, Jong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.269-274
    • /
    • 2008
  • For fitness-for-service analyses of underground natural gas pipelines, engineering assessment methods against possible defects need to be developed. The assessment methods for high pressure pipeline of KOGAS, was developed using the full size pipe burst tests and the finite element analysis. It included the defect assessment methods for a single and multi-corrosion, corrosion in girth welding part, corrosion in seam welding part, the mechanical damage defects as dent and gouge, crack and large plastic deformation of API 5L X65 pipe. In addition, we developed method to assess pipeline integrity by internal and external load to buried pipeline. Evaluation results were compared with other methods currently being applied to the gas pipeline. The program of Windows environment is made for easily using assessment methods. It provides a consistent user interface, so non-professional technician can easily and friendly use the FFS program from company intranet. Several evaluation programs is easily installed using one installer. Each program constitutes a common input interface and the output configuration program, and evaluation result store and can be recalled at any time. The FFS program based on independent evaluation method is used to evaluate the integrity and safety of KOGAS pipeline, and greatly contribute to safe and efficient operation of pipeline. This paper presents experimental, analytical and numerical investigations to develop the FFS methods for KOGAS pipeline, used as high pressure natural gas transmission pipeline within KOREA. Also, it includes the description of the integrated program for FFS methods.

  • PDF

Evaluation of High-Temperature Structural Integrity Using Lab-Scale PCHE Prototype (SUS316L 로 제작된 실험실 수준 인쇄기판형 열교환기 시제품의 고온구조건전성 평가)

  • Song, Kee Nam;Hong, Sung Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1189-1194
    • /
    • 2013
  • The Intermediate Heat Exchanger (IHX) of a Very High Temperature Reactor (VHTR) is a core component that transfers the high heat of $950^{\circ}C$ generated in the VHTR to a hydrogen production plant. The Korea Atomic Energy Research Institute manufactured a lab-scale prototype of a Printed Circuit Heat Exchanger (PCHE) as a candidate for an IHX. In this study, as a part of a high-temperature structural integrity evaluation of the lab-scale PCHE prototype made of SUS316L, we carried out high temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the lab-scale PCHE prototype under helium experimental loop (HELP) test conditions as a precedent study prior to the performance test in HELP.

Evaluation of the Shock Resistance of a Gas Turbine Package (가스터빈 패키지 내충격 성능평가에 관한 연구)

  • Kim, Jae Boo;Park, Yun Ki;Park, Min Seok;Lee, Jong Hwan;An, Sung Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.1005-1009
    • /
    • 2017
  • In this study, the shock resistance of a gas turbine package subjected to a shock load caused by non-contact underwater explosion was investigated using numerical analysis. To perform shock analysis, the time-history shock load was calculated according to BV-043 (German Navy Regulation). The direct transient response analysis in the time domain for the simplified Whole Engine Model (WEM) was performed using the calculated shock load. In addition, the structural integrity of a detailed model was evaluated by considering the shock load transferred to each component. As a result, it was confirmed that the safety factor was at least 1.0 as compared with the reference stress. Finally, the structural and functional integrity of the Engine Management System (EMS) of the gas turbine package was verified through an actual shock test.

Reliability-Based Structural Integrity Assessment of Wall-Thinned Pipes Using Partial Safety Factor (부분안전계수를 이용한 감육배관의 신뢰도 기반 건전성 평가)

  • Lee, Jae-Bin;Huh, Nam-Su;Park, Chi-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.518-524
    • /
    • 2013
  • Recently, probabilistic assessments of nuclear power plant components have generated interest in the nuclear industries, either for the efficient inspection and maintenance of older nuclear plants or for improving the safety and cost-effective design of newly constructed nuclear plants. In the present paper, the partial safety factor (PSF) of wall-thinned nuclear piping is evaluated based on a reliability index method, from which the effect of each statistical variable (assessment parameter) on a certain target probability is evaluated. In order to calculate the PSF of a wall-thinned pipe, a limit state function based on the load and resistance factor design (LRFD) concept is first constructed. As for the reliability assessment method, both the advanced first-order second moment (AFOSM) method and second-order reliability method (SORM) are employed to determine the PSF of each probabilistic variable. The present results can be used for developing maintenance strategies considering the priorities of input variables for structural integrity assessments of wall-thinned piping, and this PSF concept can also be applied to the optimal design of the components of newly constructed plants considering the target reliability levels.

High-Temperature Design and Integrity Evaluation of Sodium-Cooled Fast Reactor Decay Heat Exchanger (소듐냉각고속로 붕괴열교환기의 고온 설계 및 건전성 평가)

  • Lee, Hyeong-Yeon;Eoh, Jae-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1251-1259
    • /
    • 2013
  • In this study, high temperature design and creep-fatigue damage evaluation of a decay heat exchanger (DHX) in the decay heat removal systems of a sodium-cooled fast reactor (SFR) have been performed. Detail design and 3D finite element analysis have been conducted for the DHXs to be installed in active and passive decay heat removal systems in Korean Generation IV SFR, and the DHX installed in the STELLA-1(Sodium integral effect test loop for safety simulation and assessment) at KAERI (Korea Atomic Energy Research Institute). Evaluations of creep-fatigue damage based on full 3D finite element analyses were conducted for the two Mod.9Cr-1Mo steel heat exchangers according to the elevated temperature design codes of ASME Section III Subsection NH and RCC-MR code. Code comparisons were made based on the creep-fatigue damage evaluation and issues on conservatisms of the design codes were discussed.