• Title/Summary/Keyword: Mechanical Integrity

Search Result 789, Processing Time 0.024 seconds

Measures for the Failure Evaluation of SNF Cladding During the Transportation

  • Noh, J.S.;Kim, H.A.;Kim, T.W.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.105-106
    • /
    • 2018
  • It is important to set up a reasonable failure criterion for cladding, because being able to determine the cladding integrity during transportation is essential for the evaluation of SNF transportation system. There are a few of measures which can be used as a failure criterion for cladding subjected to its specific failure mode. Therefore, to select and to use appropriate failure criterion measures, i.e. strain(UE), $K_{IC}$, and CSED would be a key in evaluating the cladding integrity during transportation with every aspects. In order to justify and quantify that criterion properly, various experiments for the mechanical properties of the claddings with different conditions shall be implemented, which data will enable to justify the failure criteria proposed.

  • PDF

Thermally Crosslinked Polyimide Binders for Si-alloy Anodes in Li-ion Batteries

  • Chang, Hyeong-Seok;Ji, Sang-Gu;Rho, Miso;Lee, Byoung-Min;Kim, Sung-Soo;Choi, Jae-Hak
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.339-346
    • /
    • 2022
  • Silicon (Si) has attracted considerable attention due to its high theoretical capacity compared to conventional graphite anode materials. However, Si-based anode materials suffer from rapid capacity loss due to mechanical failure caused by large volume change during cycling. To alleviate this phenomenon, crosslinked polymeric binders with strong interactions are highly desirable to ensure the electrode integrity. In this study, thermally crosslinked polyimide binders were used for Si-alloy anodes in Li-ion batteries. The crosslinked polyimide binder was found to have high adhesion strength, resulting in enhanced electrode integrity during cycling. Therefore, the Si-alloy anodes with crosslinked polyimide binder provide enhanced electrochemical performance, such as Coulombic efficiency, capacity retention, and cycle stability.

Structural Integrity Assessment of High-Strength Anchor Bolt in Nuclear Power Plant based on Fracture Mechanics Concept (원자력발전소 고강도 앵커 볼트의 파괴역학적 건전성평가)

  • Lim, Eun-Mo;Huh, Nam-Su;Shim, Hee-Jin;Oh, Chang-Kyun;Kim, Hyun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.875-881
    • /
    • 2013
  • The failure of a bolted joint owing to stress corrosion cracking (SCC) has been considered one of the most important structural integrity issues in a nuclear power plant. In this study, the failure possibility of bolting, which is used to support the steam generator of a pressurized water reactor, owing to SCC and brittle fracture was evaluated in accordance with guidelines proposed by the Electric Power Research Institute, which are called the Reference Flaw Factor method. For this evaluation, first, detailed finite element stress analyses were conducted to obtain the actual nominal stresses of bolting in which either service loads or bolt preloads were considered. Based on these nominal stresses, the structural integrity of bolting was addressed from the viewpoints of SCC and toughness. In addition, the accuracy of the EPRI Reference Flaw Factor for assessing bolting failure was investigated using finite element fracture mechanics analyses.

Improvement of Surface Integrity in Hard Turning With Sensitivity Analysis of Cutting Parameter

  • Kong, Jeong-Heung;Park, Man-Jin;Kim, Jin-Hyun;Jang, Dong-Young;Han, Dong-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.321-322
    • /
    • 2002
  • This paper presents study of effects of cutting parameters such as cutting speed, feed rate and depth of cut on the surface roughness in hard turning. Taguchi Method and linear regression model of design parameters were utilized to identify the controlling process parameters that can monitor the surface roughness in the hard turning operation. In the process optimization, experimental planning was performed using the orthogonal array and concept of the signal-to-noise ratio. Cutting parameters such as speed, feed rate, and depth of cut were selected as process parameters and the ANOVA analysis showed that feed rate and cutting speed had more effect on the roughness variation that depth of cut.

  • PDF

Structural Concept Design of KALIMER-600 Sodium Cooled Fast Reactor (소듐냉각 고속로 KALIMER-600 원자로 구조 개념설계)

  • Lee, Jae-Han;Park, Chang-Gyu;Kim, Jong-Bum;Koo, Gyeong-Hoi
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.285-290
    • /
    • 2007
  • KALIMER-600 is a sodium cooled fast reactor with a fast spectrum neutron reactor core. The NSSS design has three heat transport systems of a PHTS (Primary Heat Transport System), a IHTS (Intermediate Heat Transport System) and a SGS (Steam Generation System). PHTS is a pool type and has a large amount of sodium in the pool. The mechanical design targets are maintaining the enough structural integrity for a seismic load of SSE 0.3g and the thermal and mechanical loads by the high temperature environments and an economical competitiveness when compared with other reactor types.

  • PDF

APPLICATION OF ACOUSTIC EMISSION FOR DIAGNOSIS OF QUENCH IN SUPER CONDUCTIVE MAGNET AT CRYOGENIC TEMPERATURE

  • Lee, Joon-Hyun;Lee, Min-Rae;Kwon, Young-Kin;Song, Bong-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.160-165
    • /
    • 2007
  • It is well recently recognized that quench is one of the serious problems for the integrity of superconducting magnets, which is mainly attribute to the rapid temperature rising in the magnet due to some extrinsic factors such as conductor motion, crack initiation etc. In order to apply acoustic emission(AE) technique effectively to monitor and diagnose superconducting magnets, it is essential to identify the sources of acoustic emission. In this paper, an acoustic emission technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2K. For these purposes special attention was paid to detect AE signals associated with the quench of superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current.

  • PDF

Evaluation of Material Degradation of 1Cr-1Mo-0.25V Turbine Casing Steel Aged Artificially by Isothermal Heat Treatment (등온열처리법에 의해 모의 열화된 1Cr-1Mo-0.25V 터빈케이싱 강의 재질열화 평가)

  • Ma, Young-Wha;Kim, Do-Hyung;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.22-26
    • /
    • 2010
  • Material degradation should be considered to assess integrity and residual life of high temperature equipments. However, the property data reflecting degradation are not sufficient for practical use. In this study, mechanical properties of 1Cr-1Mo-0.25V casting steel generally used for turbine casing were measured and variation of microstructure was observed. Degradation was simulated by isothermal heat treatment.

Feature-Based Multi-Resolution Modeling of Solids Using History-Based Boolean Operations - Part II : Implementation Using a Non-Manifold Modeling System -

  • Lee Sang Hun;Lee Kyu-Yeul;Woo Yoonwhan;Lee Kang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.558-566
    • /
    • 2005
  • We propose a feature-based multi-resolution representation of B-rep solid models using history-based Boolean operations based on the merge-and-select algorithm. Because union and subtraction are commutative in the history-based Boolean operations, the integrity of the models at various levels of detail (LOD) is guaranteed for the reordered features regardless of whether the features are subtractive or additive. The multi-resolution solid representation proposed in this paper includes a non-manifold topological merged-set model of all feature primitives as well as a feature-modeling tree reordered consistently with a given LOD criterion. As a result, a B-rep solid model for a given LOD can be provided quickly, because the boundary of the model is evaluated without any geometric calculation and extracted from the merged set by selecting the entities contributing to the LOD model shape.

Analysis Of the Joint Structure of the Vehicle Body by Condensed Joint Matrix Method

  • Suh, Myung-Won;Yang, Won-Ho;Jonghwan Suhr
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1639-1646
    • /
    • 2001
  • It is often necessary that the joints characteristics should be determined in the early stage of the vehicle body design. The researches on identification of joints in a vehicle body have been performed until the recent year. In this study, the joint characteristics of vehicle structure were expressed as the condensed matrix forms from the full joint stiffness matrix. The condensed joint stiffness matrix was applied to typical T-type and Edge-type joints, and the usefulness was confirmed. In addition, it was applied to the real center pillar model and the full vehicle body in order to validate the practical application.

  • PDF

Analysis of Hagen-Poiseuille Flow Using SPH

  • Min, Oakkey;Moon, Wonjoo;You, Sukbeom
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This paper shows how to formulate the transient analysis of 2-dimensional Hagen-Poiseuille flow using smoothed particle hydrodynamics (SPH). Treatments of viscosity, particle approximation and boundary conditions are explained. Numerical tests are calculated to examine effects caused by the number of particles, the number of particles per smoothing length, artificial viscosity and time increments for 2-dimensional Hagen-Poiseuille flow. Artificial viscosity for reducing the numerical instability directly affects the velocity of the flow, though effects of the other parameters do not produce as much effect as artificial viscosity. Numerical solutions using SPH show close agreement with the exact ones for the model flow, but SPH parameter must be chosen carefully Numerical solutions indicate that SPH is also an effective method for the analysis of 2-dimensional Hagen-Poiseuille flow.