• Title/Summary/Keyword: Mechanical Integrity

Search Result 797, Processing Time 0.031 seconds

MODAL CHARACTERISTIC ANALYSIS OF THE APR1400 NUCLEAR REACTOR INTERNALS FOR SEISMIC ANALYSIS

  • Park, Jong-Beom;Choi, Youngin;Lee, Sang-Jeong;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Park, Chan-Il
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.689-698
    • /
    • 2014
  • Reactor internals are sensitive to dynamic loads such as earthquakes and flow induced vibration. Thus, it is essential to identify the dynamic characteristics to evaluate the seismic integrity of the structures. However, a full-sized system is too large to perform modal experiments, making it difficult to extract data on its modal characteristics. In this research, we constructed a finite element model of the APR1400 reactor internals to identify their modal characteristics. The commercial reactor was selected to reflect the actual boundary conditions. Our FE model was constructed based on scale-similarity analysis and fluid-structure interaction investigations using a fabricated scaled-down model.

The Structural Characterization of Pristine and Ground Graphenes with Different Grinding Speed in Planetary Ball Mill

  • Lee, Tae-Jin;Munkhshur, Myekhlai;Tanshen, Md. Riyad;Lee, Dae-Chul;Chung, Han-Shik;Jeong, Hyo-Min
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.23-29
    • /
    • 2013
  • The activation process is the key to graphene's practical application. In this study, the effect of grinding speed in planetary ball mill on structural integrity of graphene has been studied at various grinding speed such as 100 rpm, 200 rpm, 300 rpm, 400 rpm and 500 rpm. The morphology and structure of pristine graphene and ground graphenes were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy respectively. According to these results, structural properties of graphene were improved when grinding speed was increased.

Study on Structural Integrity and Dynamic Characteristics of Knuckle Parts of KTX Anti-Roll Bar (KTX 고속열차 안티롤바 너클부의 동특성 및 구조 안전성 평가)

  • Jeon, Kwang Woo;Shin, Kwang Bok;Kim, Jin Woo;Jeong, Yeon Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1035-1041
    • /
    • 2013
  • To evaluate the structural integrity and dynamic characteristic of the knuckle part of a KTX anti-roll bar, an experimental and a numerical approach were used in this study. In the experimental approach, the acceleration and strain data for the knuckle parts of the KTX and KTX-SANCHUN anti-roll bar were respectively measured to evaluate and compare its structural dynamic characteristics under the operating environments of the Honam line. In the numerical approach, the evaluation of its structural integrity was conducted using LS-DYNA 3D, and then, the reliability of the finite element model used was ensured by a comparative evaluation with the experiment. The numerical results showed that the stress and velocity field of the knuckle part composed of a layered structure of a thin steel plate and rubber were more moderate than those of the knuckle part made of only a thick steel block owing to the reduction of relative contact between the knuckle and the connecting rod. It was found that the knuckle part made of a thin steel plate and rubber was recommended as the best solution to improve its structural integrity resulting from the elastic behavior of the KTX anti-roll bar being enabled under a repeating external force.

Enhanced Crystallinity of Piezoelectric Polymer via Flash Lamp Annealing (플래시광 열처리를 통한 압전 고분자의 결정성 향상 연구)

  • Donghun Lee;Seongmin Jeong;Hak Su Jang;Dongju Ha;Dong Yeol Hyeon;Yu Mi Woo;Changyeon Baek;Min-Ku Lee;Gyoung-Ja Lee;Jung Hwan Park;Kwi-Il Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.427-432
    • /
    • 2024
  • The polymer crystallization process, promoting the formation of ferroelectric β-phase, is essential for developing polyvinylidene fluoride (PVDF)-based high-performance piezoelectric energy harvesters. However, traditional high-temperature annealing is unsuitable for the manufacture of flexible piezoelectric devices due to the thermal damage to plastic components that occurs during the long processing times. In this study, we investigated the feasibility of introducing a flash lamp annealing that can rapidly induce the β-phase in the PVDF layer while avoiding device damage through selective heating. The flash light-irradiated PVDF films achieved a maximum β-phase content of 76.52% under an applied voltage of 300 V and an on-time of 1.5 ms, a higher fraction than that obtained through thermal annealing. The PVDF-based piezoelectric energy harvester with the optimized irradiation condition generates a stable output voltage of 0.23 V and a current of 102 nA under repeated bendings. These results demonstrate that flash lamp annealing can be an effective process for realizing the mass production of PVDF-based flexible electronics.

Design and Integrity Evaluation of High-temperature Piping Systems in the STELLA-2 Sodium Test Facility (STELLA-2 소듐 시험 시설 고온 배관 계통의 설계 및 건전성 평가)

  • Son, Seok-Kwon;Lee, Hyeong-Yeon;Ju, Yong-Sun;Eoh, JaeHyuk;Kim, Jong-Bum;Jeong, Ji-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.775-782
    • /
    • 2016
  • In this study, elevated temperature design and integrity evaluation have been conducted using two different piping design codes for the high-temperature piping systems of sodium integral effect test loop for safety simulation and assessment(STELLA-2) being developed by KAERI(Korea Atomic Energy Research Institute). The design code of ASME B31.1 for power piping and French nuclear grade piping design guideline, RCC-MRx RD-3600 were applied, and conservatism of those codes was quantified based on the piping integrity evaluation results. The piping system of Model DHRS, Model IHTS and PSLS are to be installed in STELLA-2. The integrity evaluation results for the three piping systems according to the two design codes showed that integrity of the piping system was confirmed. As a code comparison result, ASME B31.1 was shown to be more conservative for sustained loads while RD-3600 was more conservative for thermal loads compared to B31.1.

Forensic Engineering Study on Structural Integrity Evaluation of Scaffolding System Tower using ANSYS (ANSYS를 이용한 스캐폴딩 시스템 타워 구조 건전성 평가에 관한 법공학적 연구)

  • Kim, J.H.;Kim, E.S.;Park, W.S.;Moon, B.S.;Goh, J.M.;Park, N.K.;Yoon, K.B.;Cho, S.W.
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.42-48
    • /
    • 2013
  • Forensic engineering is the application of engineering principles covering the investigation of constructed facilities and systems that fail to perform as intended, causing personal injury or damage to property, environmental, economy etc. In the year 2012, two collapsed accidents of the large scaffolding system in national thermal power station occurred one after another, causing many casualties. In this study, we had performed to investigate the collapsed accident of scaffolding system occurred in the a thermal power station of two accidents. First, the investigation about the collapsed accidents site had performed to understand collapsed state and structures of the scaffolding system. Second, reviewing the materials concerning about the applied weight on the scaffolding system had performed. The applied weight is sum of the weights of the 15 workers, additional materials for coating work and dispersed and loaded shot ball on the foothold etc. the applied weight that calculated exceed more three times than the safe working load. Third, we had confirmed the install state of the materials of the scaffolding system by reviewing the quantity of the materials on the manual and the real system. Last, structural analysis had performed to evaluate structural integrity of the scaffolding system using Ansys. Through a series of this processes, the definite accidents causes of the collapsed scaffolding system revealed. Through these studies, the collapse accident that may occur in the scaffolding system in thermal power station can be minimized by performing specialized and systematic investigation on the accidents in terms of Forensic engineering.

Design of a 2MW Blade for Wind Turbine and Uni-Directional Fluid Structure Interaction Simulation (2 MW급 풍력터빈 블레이드 설계 및 단방향 유체-구조연성해석)

  • Kim, Bum-Suk;Lee, Kang-Su;Kim, Mann-Eung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1007-1013
    • /
    • 2009
  • The purposes of this study are to evaluate the power performance through CFD analysis and structural integrity through uni-directional FSI analysis in aerodynamic design and structure design of wind turbine blade. The blade was designed to generate the power of 2MW under the rated wind speed of 11 m/s, consisting of NACA 6 series, DU series and FFA series airfoil. The inside section of the blade was designed into D-spar structure and circular stiffener was placed to reinforce the structural strength in the part of hub. CFD analysis with the application of transitional turbulence model was performed to evaluate the power performance of blade according to the change of TSR and 2.024MW resulted under the condition of rated wind speed. TSR of 9 produced the maximum power coefficient and in this case, Cp was 0.494. This study applied uni-directional FSI analysis for more precise evaluation of structural integrity of blade, and the results of fiber failure, inter fiber failure and eigenvalue buckling analysis were evaluated, respectively. For the evaluation, Puck's failure criteria was applied and the result showed that fiber failure and inter fiber failure did not occur under every possible condition of the analysis. As a result, power performance and structural integrity of 2 MW blade designed in this study turned out to satisfy the initial design goals.