• Title/Summary/Keyword: Mechanical Fatigue

Search Result 2,382, Processing Time 0.025 seconds

A Study on Fatigue Crack Growth and Stress Intensity Factors of Notch Materials (노치재의 피로균열진전과 응력확대계수 평가에 관한 연구)

  • Lee, Jong-Hyung;Lee, Sang-Young;Yi, Chang-Heon;Kim, Yun-Gon;Lim, Chun-Kyoo;Lee, Chun-Kon;Kwon, Yung-Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.3
    • /
    • pp.165-169
    • /
    • 2007
  • Prediction of fatigue duration is attainable from the analysis of the growth rate of the fatigue crack, and the property of the fatigue crack growth is determined by the calculation of the stress intensity factor. And the evaluation of the stress intensity factor, K comes from the stress analysis of the vicinity of crack tip of the continuum. This study describes a simple method to decide the stress intensity factor for the small crack at the sharp edge notches. The proposed method is based on the similarities between elastic stress fields of the notch tip described by two parameters, the stress concentration factor K, the radius of arc of the notch. And it is applicable to the analysis of the semi-elliptical penetration cracks and the edge notches.

  • PDF

Fatigue Crack Retardation by Concurrent Cold-Expansion and Ring-indentation (홀확장과 링압인 동시적용에 의한 피로균열지연)

  • Yu, Jin-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.305-316
    • /
    • 1997
  • A more efficient method for obtaining the fatigue life enhancement of a structure member with fastener holes is described. It is based on the combined process of cold-expansion and ring-indentation. Residual stresses were induced onto premachined holes using ring-indentation process near the fastener hole combined with cold-expansion. And residual stresses at the vicinity of a hole were evaluated using a fracture mechanics approach. The compressive residual stresses were larger using the combined process than is in the case of simple cold-expansion. Fatigue testing of aluminum specimens showed that the fatigue crack growth retardation emanating from a circular hole was greater for the combined process than for a simple cold-expansion alone.

The Fatigue Behavior and Delamination Properties in Fiber Reinforced Aramid Laminates -Case (I) : AFRP/Al Laminates-

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.343-349
    • /
    • 2003
  • The fuselage-wing intersection suffers from the cyclic bending moment of variable amplitude. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in AFRP/Al laminate of fuselage-wing was investigated in this study. The cyclic bending moment fatigue test in AFRP/Al laminate was performed with five levels of bending moment. The shape and size of the delamination Lone formed along the fatigue crack between aluminum sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging behavior and the delamination zone were studied. As results, fiber failures were not observed in the delamination zone in this study, the fiber bridging modification factor increases and the fatigue crack growth rate decrease and the shape of delamination zone is semi-elliptic with the contour decreasing non-linearly toward the crack tip.

Low Cycle Fatigue of PPS Polymer Injection Welds ( II ) - Fiber Orientation and Fracture Mechanism -

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.836-843
    • /
    • 2003
  • The polymer composites contain numerous internal boundaries and its structural elements have different responses and different resistances under the same service environment. Fatigue phenomenon is much more complex in composites than homogeneous materials. An understanding of the fracture behavior of polymer composite materials subjected to constant and cyclic loading is necessary for predicting the life time of structures fabricated with polymers. There is a need to acquire a better understanding of the fatigue performance and failure mechanisms of composites under such conditions. Therefore, in this study the analyses of fiber orientation and fracture mechanism for low cycle fatigue crack have been studied by SEM and LM for observing the ultrathin sections.

A Study on Fatigue Crack Propagation Mechanism of GFRP in Synthetic Sea Water

  • Kim, Yon-Jig;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1380-1385
    • /
    • 2001
  • This paper evaluates the fatigue fracture behavior of a chopped strand glass mat/polyester composite both in ai, and sea water, Bending fatigue (R=-1) was performed on dry and wet specimens, that is respectively in air and sea water. Where the pH concentration of sea water was controlled to 6.0,8.2, 10.0 and the wet specimens were immersed in the sea waters for 4 months. Throughout the tests, fatigue cracks both in the dry and wet specimens, tested in the air or sea water, occurred at the beginning of the cycle, followed by either of two regions one decreasing and the other increasing as the crack growth rate increases.

  • PDF

Corrosion and Corrosion Fatigue Characteristics of Artificially Sensitized STS 304 (STS304 열화재의 부식및 부 식피로특성)

  • Han, Ji-Won;Bae, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.28-33
    • /
    • 2010
  • Stainless steel is useful material for various industrial facilities such as the nuclear and steam power plant and the heavy chemical industry due to its good corrosion resistance and mechanical properties. However, it has also a large problem that is sensitized in the welding process and its corrosion resistance and mechanical properties decreases by sensitization. Thus, corrosion and corrosion fatigue characteristics of artificially sensitized austenitic STS304 were investigated through the EPR test and corrosion fatigue test. Obtained results are as follows: 1) According to the sensitizing period increase, Cr deficiency layer is linearly expanded. 2) Degree of sensitization(Ia/Ir) proportionally increased with sensitizing period. However, after 4hrs, it showed constant value. 3) Cr-carbide($Cr_{23}C_6$) in the grain boundary increased as sensitizing period increases until six hours. 4) corrosion fatigue strength of sensitized STS304 were remarkably reduced compare to non-sensitized ones.

Fatigue Characteristics of Laser Welded Zirconium Alloy Thin Sheet (레이저 용접된 박판 지르코늄 합금의 피로특성)

  • Jeong, Dong-Hee;Kim, Jae-Hoon;Yoon, Yong-Keun;Park, Joon-Kyoo;Jeon, Kyeong-Rak
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.59-63
    • /
    • 2012
  • The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water and maintains geometry from external impact load and cyclic stress by the vibration of nuclear fuel rod, it is necessary to have sufficient strength against dynamic external load and fatigue strength. In this study, the mechanical properties and fatigue characteristics of laser beam welded zircaloy thin sheet are examined. The material used in this study is a zirconium alloy with 0.66 mm of thickness. The fatigue strength under cyclic load was evaluated at stress ratio R=0.1. S-N curves are presented with statistical testing method recommend by JSME- S002 and compared with S-N curves at R.T. and $315^{\circ}C$. As a result of the experimental approach, the design guide of fatigue strength is proposed and the results obtained from this study are expected to be useful data for spacer gird design.

Evaluation of Residual Stress Effect about Fatigue Characteristic of U-shaped Structure (U자형 구조의 피로특성에 대한 잔류응력의 영향 평가)

  • Kim, Sang-Young;Koo, Jae-Mean;Seok, Chang-Sung;Mo, Jin-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.79-86
    • /
    • 2010
  • Mechanical structures with power sources experience repeated force produced by motors. In result, the life of the pipes reduces and ultimately, the pipes collapse. Such pipes are formed into several shapes and particularly, the U-shape pipe is damaged frequently. In most cases, the U-shape pipe is made with a straight pipe by complicated bending work. During this work process, plastic deformation of the pipe produces residual stress in the pipe. This residual stress significantly affects the fracture behavior of the pipe and induces the change of the stress ratio (min. stress/Max. stress = R). For this reason, residual stress has to be evaluated. In this paper, the residual stress of a U-shaped pipe was evaluated by FEM analysis. In addition, fatigue tests of the U-shaped pipe were performed by using a uniaxial fatigue testing machine. The results of the fatigue test were modified with the results of FEM (Finite Element Method) analysis for residual stress. The modified fatigue test results of the U-shaped pipe were compared with those of a straight pipe.

Development of Modified Creep-Fatigue Damage Model for High Temperature Life Prediction (고온 수명평가를 위한 수정 크립-피로 손상모델의 걔발)

  • Park, Jong-Joo;Seok, Chang-Sung;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3424-3432
    • /
    • 1996
  • For mechanical system operating at high temperature, damage due to the interaction effect of creep and fatigue plays an important role. The objective of this paper is to develop a modified creep-fatigue damage model which separately analyzes the pure creep damage for hold time and the creep-fatigue interaction damage during startup and shutdown period. The creep damage was calculated by the general creep damage equation and the creep-fatigue interaction damage was calculated by the modified equation which is based on the frequency modified strain range method with strain rate term. In order to verify the proposed model, a service of high temperature low cycle fatigue tests were performed. The test specimens were made from inconel-718 superalloy and the test parameters were wave shape and hold time. A good agreement between the predicted lives based on the proposed model and experimentally obtained ones was observed.

A Study on Residual Stress for Fatigue Fracture Surface in General Purpose Structural Steel using X-ray Diffraction (X-선 회절을 이용한 피로하중을 받는 일반구조용강의 잔류응력에 관한 연구)

  • 조석수;장득열;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.248-261
    • /
    • 1999
  • The fatigue life of mechanical components and structures has been influenced by mechanical, material and environmental conditions. It is important to search out the load type and size for accurate cause of fracture at the damaged surface of material. The fractographic method by x-ray diffraction can utilize residual stress $\sigma$_r and half-value breadth B and find out the types and the mechanical conditions of fracture. This study showed the relationship between fracture mechanical parameters $\Delta$K, $K_{max}$ and X-ray residual stress $\sigma$_r for normalized SS41 steel with homogeneous crystal structure and M.E.F. dual phase steel(martensite encapsulated islands of ferrite). The fatigue crack propagation tests were carried out under stress ratios 0.1 and 0.5. The x-ray diffraction technique according to crack propatation direction was applied to fatigue fractured surface. Residual stress $\sigma$_r was independent on stress ratios by arrangement of $\Delta$K. The equation of $\sigma$_r$\Delta$K was established by the experimental data. Therefore, fracture mechanical parameters can be estimated can be estimated by the measurement of X-ray parameters.

  • PDF