• 제목/요약/키워드: Mechanical Control Valve

검색결과 577건 처리시간 0.025초

해수제빙장치의 최적 운전 조건 탐색을 위한 실험적 연구 (Experimental Study for Investigating the Optimum Operating Conditions of a Seawater Ice Machine)

  • 이화;주우진;정석권
    • 동력기계공학회지
    • /
    • 제14권5호
    • /
    • pp.76-82
    • /
    • 2010
  • This paper investigates the optimum operating conditions to construct total automatic control system with high energy efficiency of a newly developed seawater ice machine. The machine has an electronic expansion valve(EEV) and a variable speed rotating drum with an evaporator installed inside. The coefficient of performance(COP) was used as an index to evaluate energy efficiency of the machine. At first, the opening angle of EEV was adjusted to obtain COP of the machine at a constant speed of the drum. Then, we checked seawater ice product versus opening angles of the EEV. Finally, effect of drum's rotating speed in response to product of seawater ice and seawater ice temperature were considered.

사판식 피스톤 펌프 흡입구의 유동 특성에 관한 연구 (A Study on the Flow Characteristics of a Swash-Plate Piston-Pump Inlet)

  • 이정실;전차수
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, a cavitation occurrence in a piston-pump inlet was investigated by simulating the pressure distribution, according to the inlet shape of a variable-displacement swash-plate piston pump that supplies high-pressure oil to control the hydraulic system of a marine engine. Two types of pump inlets with different shapes were cast into impression models, and the models were reverse-engineered by 3D scanning. Then, the hydraulic-pressure distribution was analyzed through finite-element analysis. The results of the analysis confirmed that cavitation occurs more easily in the inlet with a steeper slope during pump operation because the inlet pressure on the valve plate is lower than that of the other pump with a gentler inlet slope.

차량용 연료전지 냉각시스템 제어 알고리즘 특성 연구 (Control Algorithm Characteristic Study of Cooling System for Automotive Fuel Cell Application.)

  • 한재영;박지수;유상석
    • 대한기계학회논문집B
    • /
    • 제40권1호
    • /
    • pp.39-45
    • /
    • 2016
  • 차량용 연료전지의 부하 변동시 열관리는 성능과 내구성에 직결되기 때문에 매우 중요하다. 본 연구에서는 작동 부하 조건 내에 온도를 유지할 수 있도록 하기 위한 열관리 시스템용 선형 상태 궤환 제어기를 설계하였다. 차량용 연료전지 열관리 모델은 레저버, 라디에이터, 바이패스 밸브, 팬 그리고 냉각수 펌프 등으로 구성하였으며, MATLAB/SIMULINK$^{(R)}$으로 개발하였다. 시스템 모델의 비선형성으로 인해, 부하 조건 $0.5A/cm^2{\sim}0.7A/cm^2$ 에서 온도 제어 지령을 정상적으로 달성하기 위해 PWM(Pulse Width Modulation)과 수정된 상태 궤환 제어기를 적용하였고 제어 알고리즘의 성능은 ITAE(Integral time weighted error)로 평가하였다. 수정된 상태 궤환 제어기가 저 부하 구간에서 다른 알고리즘에 비해 더 효율적으로 온도를 제어하는 것을 확인하였다.

흡입포트형상에 따른 모터링엔진내 압축과정 난류특성 연구 (The Effect of Intake Port Configurations on the Turbulence Characteristics During Compression Stroke in a Motored Engine)

  • 강건용;이진욱;정석용;백제현
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.920-932
    • /
    • 1994
  • The combustion phenomena of a reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. This paper describes cycle resolved LDV measurement of turbulent flow inside the cylinder of a 4-valve engine under motoring(non-firing) conditions, and studies the effect of intake port configurations on the turbulence characteristics using following parameters ; Eulerian temporal autocorrelation coefficient, turbulence energy spectral density function, Taylor micro time scale, integral time scale, and integral length scale.

2영역 에너지법과 화염 화상 처리법을 이용한 디젤 연소실내 스월 유동 특성에 관한 연구 (A Study on the Characteristics of Swirl Flow in a Diesel Engine by 2-Zone Energy Method and Image Process of Flame)

  • 정재우;이기형;이창식
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1655-1662
    • /
    • 2002
  • Recently, many researches have been performed to improve the performance of the combustion and emission in a D.I.Diesel engine. And many new techniques have been introduced and developed to reduce NO$_{x}$ and soot exhausted from diesel combustion. Some of these methods have the peculiar injection timing which is not used to traditional timing. To optimize these injection timing, characteristics of swirl flow and interaction of swirl with injection in the diesel engine should be investigated more carefully. Therefore, in this study, 2-zone energy method is adopted for the understanding of swirl flow in condition of moving piston, and then flame visualizations and image process are performed. From these studies, the characteristics of the swirl flow generated by SCV was investigated and the effect of swirl on injection timing was elucidated. As the results, velocity distribution caused by swirl flow increase the space utilization rate of flame plums. And flame plums of weak momentum are remained inside of combustion chamber by the swirl flow.w.

하천수 열원 2단압축 열펌프의 최적 중간압에 관한 실험적 연구 (An Experimental Study on the Optimal Intermediate Pressure of a 2-Stage Compression Heat Pump Using River Water)

  • 박차식;정태훈;주영주;김용찬
    • 설비공학논문집
    • /
    • 제21권6호
    • /
    • pp.333-339
    • /
    • 2009
  • The objective of this study is to predict optimal intermediate pressure of a 2-stage compression heat pump system using river water. To determine the maximum performance of the 2-stage compression heat pump system, the experimental evaluations on the 2-stage compression cycle were carried out under various operating conditions. Electronic expansion valves were applied to control intermediate pressure and superheat. Based on the experimental data, an empirical correlation for predicting optimal intermediate pressure which considering cycle operating parameters was developed. The present correlation was verified by comparing the predicted data with the measured data. The predictions showed a good agreement with the measured data within a relative deviation of ${\pm}4%$ at various operating conditions.

드리프터의 유압시스템 해석모델 개발 및 신뢰성 검토 (Development of Drifter's Hydraulic System Model and Its Validation)

  • 노대경;장주섭;서자호;김흥섭;박승현
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권3호
    • /
    • pp.14-21
    • /
    • 2014
  • The goal of this study drifter is to understand the operating mechanism of a drifter and to suggest a reliable analysis model which can be used for evaluating the drifter's performance from the viewpoint of impact frequency and energy. For this, the working principle of drifter and functions of its main components were analyzed, and a simulation model was developed based on the analysis. The model was validated using experimental tests on a test-bench. A comparative study of simulation and experimental results indicated that the suggested model accurately represents the real drifter system in terms of impact frequency and impact energy per blow.

수치해석을 통한 건설중장비 유압시스템용 파이프설계에 대한 연구 (Pipe Design for Hydraulic System in Construction Heavy Equipment by Numerical Analysis)

  • 신유인;이중섭;한성길;이호성
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.64-71
    • /
    • 2019
  • We herein propose a systematic design method of hydraulic pipes used in heavy construction equipment. We found that even though many design studies have been conducted regarding major hydraulic components such as pumps, cylinders, and control valves, studies regarding the optimal design of hydraulic pipes are scarce. In this study, the design of four types of pipes is considered: two high-pressure and two low-pressure pipes. First, fluid flow analysis was conducted based on oil flow and pressure for various radii of curvature. For a check-valve pipe, we considered the location of an inlet pipe. We could visualize fluid flow inside the pipe according to the flow velocity and pressure distribution. Based on fluid flow analysis, we conducted a structural analysis that revealed the stress distribution and concentration for each pipe design. We selected the best design parameters for each pipe design, fabricated the pipes, and subsequently tested them for validity.

자전거 탑승자용 웨어러블 에어백의 팽창성능 해석 및 시험에 관한 연구 (A Study on Inflation Performance Analysis and Test of A Wearable Airbag for Bikers)

  • 김현식;변기식;백운경
    • 한국안전학회지
    • /
    • 제34권2호
    • /
    • pp.22-27
    • /
    • 2019
  • Bikers can be subjected to accidents during their bicycling. Helmets are only good, if any, for their head protection. A wearable airbag can protect the human neck area if it is properly designed. This airbag system is composed of an inflater and an airbag. The inflater contains a pressurized gas cylinder and a piercing device. The airbag is an inflatable fabric surrounding the human neck. When a bicycle accident happens, a sensor captures the motion of the biker and a microcomputer sends a signal to open a valve in the inflator to supply the pressurized gas to the airbag. An important issue of this system is that the airbag should be quickly inflated to protect the human neck. This paper deals with the airbag inflation time simulation and some issues to design a wearable airbag system. Also, a prototype was tested to show its feasibility using a human dummy mounted on a running cart.

밀폐형 수배관시스템에서 CFD를 활용한 복합밸브 특성곡선 해석 방법 제안 (Proposal of Analyis Method for PICV Characteristics Curve Using CFD in Hydronic System)

  • 도가현;김진호;박우평;민준기
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.20-29
    • /
    • 2021
  • In this study, it is proposed that an analysis method using charatersistics curve of PICV in the CFD simulation for hydronic system. From the results, the pressure drop characteristics appeared in the region of PICV at a specified flow rate. And the CFD results are in good agreement with the experimental results. Proposed analysis method is proved that the characteristics of PICV applied to the hydronic system were properly applied in the flow analysis. This result can be applied to PICV in the complex hydronic systems. Therefore, the optimal selection of PICV in hydronic system contribute the building energy saving.