• 제목/요약/키워드: Mechanical Control Valve

검색결과 577건 처리시간 0.029초

밸브오버랩기간 변화에 의한 흡기관 분사식 수소기관의 역화억제에 관한 연구 (A Study of Backfire Control in a Hydrogen-Fueled Engine with External Mixture Using Changes of Valve Overlap Period)

  • 강준경;;노기철;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3311-3316
    • /
    • 2007
  • To analyze the influence of valve overlap period on a backfire occurrence, the single cylinder research engine with MCVVT(Mechanical Continuous Variable Valve Timing) system is developed and backfire limit equivalence ratio defined as fuel-air ratio equivalence ratio at which backfire occurs is examined according to various valve overlap period. The MCVVT is the system to control valve overlap period by mechanical device. It is estimated that the lower valve overlap period has the higher backfire limit equivalence ratio though the same energy is supplied. When the valve overlap period is changed from 30$^{circ}$ CA to 0$^{circ}$ CA, backfire limit equivalence ratio is increased 74%, approximately. It means that valve overlap period is concern in backfire occurrence, and may be one of the methods for controlling back fire occurred in a $H_2$ engine.

  • PDF

A Study on the Design of Electromagnetic Valve Actuator for VVT Engine

  • Park, Seung-hun;Kim, Dojoong;Byungohk Rhee;Jaisuk Yoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.357-369
    • /
    • 2003
  • Electromagnetic valve (EMV) actuation system is a new technology for improving fuel efficiency and at the same time reducing omissions in internal combustion engines. It can provide more flexibility in valve event control compared with conventional variable valve actuation devices. The electromagnetic valve actuator must be designed by taking the operating conditions and engine geometry limits of the internal combustion engine into account. To help develop a simple design method, this paper presents a procedure for determine the basic design parameters and dimensions of the actuator from the relations of the valve dynamics, electromagnetic circuit and thermal loading condition based on the lumped method. To verify the accuracy of the lumped method analysis, experimental study is also carried out on a prototype actuator. It is found that there is a relatively good agreement between the experimental data and the results of the proposed design procedure. Through the whole speed range, the actuator maintains proper performances in valve timing and event control.

MR유체를 이용한 유량제어 밸브 (Development of Flow Control Valve Using MR Fluid)

  • 이형돈;배형섭;이육형;박명관
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.888-891
    • /
    • 2011
  • This paper presents development of flow control valve using MR fluid. Generally, since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high level fluid power without any mechanical moving parts. In this paper, flow control valve using MR fluid on the behavior of the magnetic field influence on the numerical analysis of more accurate electromagnetic parameters were obtained, even if when magnetic field apply inside of surrounding MR fluid from electromagnet, more realistic designing way analysis of characteristic of whole magnetic field distribution is suggested by surrounding magnetic material. Also, comparison of flow rate inlet and outlet, behavior of MR fluid in experiments proposed. A new type of flow control valve using MR fluid is proposed by analysis of behavior of MR fluid in experiments.

Electronic Control of Braking Force Distribution for Vehicles Using a Direct Adaptive Fuzzy Controller

  • Kim, Hunmo;Kim, Seungdae;Sung, Yoon-Gyeoung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.66-80
    • /
    • 2001
  • In brake systems, a proportioning valve(P. V), which reduces the brake line pressure on each wheel cylinder for the anti-locking of rear wheels, is closely related to the safety of vehicles. However, it is impossible for current P. V. s to completely control brake line pressure because, mechanically, it is an open loop control system. In this paper we describe an electronic brake force distribution system using a direct adaptive fuzzy controller in order to completely control brake line pressure using a closed loop control system. The objective of the electronic brake force distribution system is to change the cut-in-pressure and the valve slop of the P. V in order to obtain better performance of the brake system than with mechanical systems.

  • PDF

비례솔레노이드 액추에이터를 이용한 압력제어밸브 (Pressure Control Valve using Proportional Electro-magnetic Solenoid Actuator)

  • 함영복;박평원;윤소남
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1202-1208
    • /
    • 2006
  • This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.

공진에 의한 터빈 Control Valve 이상 진동 (Abnormal Vibration of Turbine Control Valve due to Resonance)

  • 구재량;김성휘;고우식;이우광;김연환;황재현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2100-2104
    • /
    • 2004
  • Amount of Electricity which product generator decide control valve at Turbine. Operating method of Control valve have two mode. First operating method is Partial Arc Admission, and second operating method is Full Arc Admission. Failure of Control Valve have on serious damage electricity lineage. In this Paper, We have investigated resonance that Control Valve spring casing.

  • PDF

이색 PIV 기술을 이용한 5밸브 가솔린엔진 연소실 내의 유동특성 분석 (Investigation on the In-Cylinder Flow of 5-Valve Gasoline Engine by Using Two Color PIV Method)

  • 이기형;우영완;박상찬;이창식
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.238-244
    • /
    • 2002
  • A 5-valve(intake 3-valve) engine has been developed to increase engine performance. These engines have a high power caused by the decrease of inertia mass of an intake valve and the increase of intake effective area. In this study, in-cylinder flow patterns were visualized with laser sheet method and velocity profiles at near intake valves were inspected by using a two-color PIV. In addition, steady flow tests were performed to quantify tumble ratio of flow-fields generated by a tumble control valve(TCV). Experimental results of steady flow test show that the cure of tumble ratio in intake 3-valve engine farmed as a S shape with valve lift changes. This tendency is different from the one in intake 2-valve engine. Using laser sheet method and two color PIV method, we can find that the intake flow through upper valve increases and the velocity gradient also slightly increases as valve lift increases. From this study, the in-cylinder flow characteristics around intake valves were made clearly.

Optimal Design and Development of Electromagnetic Linear Actuator for Mass Flow Controller

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.40-47
    • /
    • 2003
  • In this paper, we constructed the analytic model of control valve as a function of electric and geometric parameters, and analyzed the influence of the design parameters on the dynamic characteristics. For improving the dynamic characteristics, optimal design is conducted by applying sequential quadratic programming method to the analytic model. This optimal design aims to minimize the response time and maximize force efficiency. By this procedure, control valve can be designed to have fast response in motion.

압전 작동기를 이용한 방향 제어 밸브의 동적 모델링 및 제어 (Dynamic Modeling and Control of Directional Control Valve Using Piezostack Actuator)

  • 전준철;한영민;구오흥;한승훈;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.331-336
    • /
    • 2012
  • This paper proposes a new type of high-frequency directional valve controlled by the piezostack actuator associated with displacement amplifier. As a first step, a dynamic model of directional valve which can operate at 200 Hz with a flow rate of 12 l/min is derived by considering pressure drop and flow force. As a second step, an appropriate piezostack is selected by considering actuation force as well as field-dependent displacement. Subsequently, in order to control spool displacement and flow rate a proportional-derivative (PD) controller is designed based on the $3^{rd}$-order valve system. Control performances such as sinusoidal trajectory tracking of the spool displacement in time domain are evaluated. In addition, the field-dependent flow rate is also presented to verify the required performance of the valve system.

  • PDF

SimulationX를 이용한 Remote Control Valve의 특성 분석에 관한 연구 (A Study on the Characteristic of Remote Control Valve Using Simulation X)

  • 정유성;정원지;이산성;이정민;최경신
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.78-84
    • /
    • 2017
  • Compared to other types of power, hydraulic energy is the most commonly used for heavy vehicles and ships because it has fewer location and space constraints, and its controllability can be maintained even under adverse conditions. Operators have controlled a main control valve of ship winches by pushing or pulling the lever, which is directly connected to the spool. However, because of the spatial arrangement, the importance of remote control valves has emerged. In this paper, experiments of the hysteresis characteristics were performed by analyzing the remote-control valve using a valve tester and RA2300. The validity was verified by comparing with the analytical model using SimulationX as the hydraulic analysis program. This study examined the effects of the spool's notch (Non, End-mill, and Spherical) and the effects of stiffness and pre-load of the spool spring on Spool stroke, open area, and hysteresis characteristics. It is considered possible to reduce the cost and the, trial and error process in designing remote-control valves in the future.