• Title/Summary/Keyword: Mecab-ko

Search Result 3, Processing Time 0.018 seconds

The Research Trend Analysis of the Korean Journal of Physical Education using Mecab-ko Morphology Analyzer (Mecab-ko 형태소 분석을 이용한 한국체육학회지 연구동향 분석)

  • Park, Sung-Geon;Kim, Wanseop;Lee, Dae-Taek
    • 한국체육학회지인문사회과학편
    • /
    • v.56 no.6
    • /
    • pp.595-605
    • /
    • 2017
  • The purpose of this study is to investigate what kind of research fields are preferred by the researcher of the Korean Physical Education Society using the Mecab-ko morpheme analysis and whether there are differences in the interests of researchers between the humanities and social sciences and natural sciences. A total of the data collected for this study are 5,014 papers published online from March 2002 to March 2017 in the Korean Journal of Physical Education was collected. In this study, we used Mecab-ko morpheme analyzer to extract the keyword from the collected documents. As a result, the study found that the number of papers published in KAHPERD appeared to be decreasing. It was also that the main concern of researchers in KAHPERD toward was leisure, live sports and health were relatively higher than the improvement of performance. The research subjects that were interested in the research were women, middle-aged and elderly. The study found that researchers in the humanities and social sciences have shown interest in both traditional research and social interests, while researchers in the natural sciences have shown an interest in a deeper study of traditional research. In conclusion, in order to realize the revitalization of sports convergence research, it is necessary to establish standards for the field of study which should focus on the depth and breadth of research.

Selection of the Optimal Morphological Analyzer for a Korean Word2vec Model (한국어 Word2vec 모델을 위한 최적의 형태소 분석기 선정)

  • Kang, Hyungsuc;Yang, Janghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.376-379
    • /
    • 2018
  • 본 논문의 목적은 오픈 소스로 공개된 3가지 한국어 형태소 분석기 (kkma, twitter 및 mecab-ko)를 비교해서 한국어 자연어 처리에 가장 적합한 분석기를 선정하는 것이다. 이를 위해, 자연어 처리 분야에서 중요한 단어 임베딩 방법론 중 하나인 word2vec 모델의 성능 검증 방법을 사용해서 각 형태소 분석기의 성능을 정량적으로 비교했다. 그 결과 mecab-ko 형태소 분석기가 최적임이 확인되었다. 단 성능 검증에 사용된 어휘가 오직 명사뿐이라는 한계가 있으므로, 향후 연구에서는 좀 더 다양한 품사에 대한 성능검증이 필요할 것으로 보인다.

Comparative Study of Tokenizer Based on Learning for Sentiment Analysis (고객 감성 분석을 위한 학습 기반 토크나이저 비교 연구)

  • Kim, Wonjoon
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.421-431
    • /
    • 2020
  • Purpose: The purpose of this study is to compare and analyze the tokenizer in natural language processing for customer satisfaction in sentiment analysis. Methods: In this study, a supervised learning-based tokenizer Mecab-Ko and an unsupervised learning-based tokenizer SentencePiece were used for comparison. Three algorithms: Naïve Bayes, k-Nearest Neighbor, and Decision Tree were selected to compare the performance of each tokenizer. For performance comparison, three metrics: accuracy, precision, and recall were used in the study. Results: The results of this study are as follows; Through performance evaluation and verification, it was confirmed that SentencePiece shows better classification performance than Mecab-Ko. In order to confirm the robustness of the derived results, independent t-tests were conducted on the evaluation results for the two types of the tokenizer. As a result of the study, it was confirmed that the classification performance of the SentencePiece tokenizer was high in the k-Nearest Neighbor and Decision Tree algorithms. In addition, the Decision Tree showed slightly higher accuracy among the three classification algorithms. Conclusion: The SentencePiece tokenizer can be used to classify and interpret customer sentiment based on online reviews in Korean more accurately. In addition, it seems that it is possible to give a specific meaning to a short word or a jargon, which is often used by users when evaluating products but is not defined in advance.