• Title/Summary/Keyword: Measuring Probe

Search Result 409, Processing Time 0.025 seconds

A Study of Heat Flux and Instantaneous Temperature According to the Equivalence Ratio in a Constant Volume Combustion Chamber (정적 연소기에서 당량비 변화에 따른 순간열유속에 관한 연구)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.624-632
    • /
    • 2003
  • In the gasoline engine industry. there has been a trend towards the development of high performance engines with improved fuel efficiency, reduced weight and smaller sizes. These trends help to solved engine problems related to thermal load and abnormal combustion. In order to investigate these Problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. A peak instantaneous temperature was obtained after 55∼60 ms from ignition and the temperature increased according to an equivalence ratio and varied differently according to the position of the probe. Total heat loss during combustion period was affected by the equivalence ratio and differed widely in accordance to the position of the probe.

A Study of Hear Flux and Instantaneous Temperature According to the Initial Tamperature of Combustion Chamber in a Constant Volume Combustion Chamber (연소실 초기온도 변화에 따른 순간열유속에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.193-200
    • /
    • 2003
  • In the production of internal combustion engines, there has been a move towards the development of high performance engines with improved fuel efficiency, lighter weight and smaller sizes. These trends help to answer problems in engines related to thermal load and abnormal combustion. In order to investigate these problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe. For achieving the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

  • PDF

Two-port probe for measuring the permittivity/permeability (유전율/투자율 측정을 위한 2-PORT PROBE)

  • Park, Sang-Bok;Lee, Jang-Soo;Cheon, Chang-Ul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2253-2254
    • /
    • 2006
  • 본 연구에서는 2-port probe를 설계, 제작하고, 이를 이용하여 유전율과 투자율을 동시에 측정해내는 기법을 연구하였다. 기존에는 유전율 측정을 위해 끝이 open되어 있는 1-port probe클 주로 이용하였지만 이는 유전율만이 측정이 가능하고 주파수 대역에 한계가 있었다. 2-port probe는 유전율과 투자율이 동시에 측정이 가능하며 주파수의 한계를 극복하였다. 2-port probe를 등가화 하여 이를 수식적으로 해석했을 경우 수많은 변수들이 발생되는데 이것을 여러 수치기법들을 이용하여 정리한 후, 유전율을 알고 있는 용액들을 이용하여 보정하였다. 또한 2-port probe에 약간의 길이 변화를 주어 주파수대역의 변화를 실험을 통해 비교 분석하였다.

  • PDF

Tilt Measurement of Drilling Machine Using the Laser Interferometer (레이저 간섭계를 이용한 드릴링 머신의 틸트 측정)

  • 이승수;손영지;김순경;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.479-484
    • /
    • 1996
  • This paper describes a method of measuring tilt motion. This method measures the tilt motion of drilling machines using a laser interferometer, a simple sliding linear bearing, measurement of the probe and the LSC(least square center) method. The next order of business is discussing the procedure of measurement. First, The measured position is considered to be the point of contact between the drill shank and the probe. The revolution of the drill axis delivers the point of contact to the probe. Second, because the laser interferometer is attached on the sliding linear bearing, any movement of probe influences laser reflector. Thus, the laser program displays the moving factor of laser reflector. Namely, this is tilt factor. Third. the points of measurement are a full circle which has 8 points (each are 45$^{\circ}$), After it is finished measuring the 8 points, let the spindle of the drilling machine move down about 5 cm. Repeating this procedure three times, we can get tilt motion's values which are calculated by LSC method. Many error factors affect the accurate measurement of tilt motion. However in this paper we ignore some error factors because they are less significant than tilt motion.

  • PDF

Measurement of motion accuracy by two-dimensional probe on NC machine tools -1st report, Measurement of the circular motion accuracy- (2차원 프로브에 의한 NC공작기계의 운동정밀도 측정 -제 1보 원호보간운동 정밀도 측정-)

  • JEON, Eon-Chan;OYAMADA, Shigenori;TSUTSUMI, Masaomi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 1996
  • This paper presented a new measuring system to improve circular motion accuracy by using two-dimensonal probe and master ring for NC machine tools. This measuring system reduced the circular motion error conspicuously by eliminating the influence of the acceleration/deceleration range and compensating the friction force whose influences were significant while measuring the motion. Experimental results show that this system had enough accuracy to measure a circular motion for NC machine tools, compared with the circular test method and the r .theta. method.

  • PDF

Theoretical Characteristics of the Probe with Respect to the Engine Oil States (엔진오일 상태에 대한 프로브의 이론 특성)

  • Kim, Young-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.22-24
    • /
    • 2012
  • Depending on the status of the engine oil, the dielectric constant is changed. Dielectric constant of oil is related to the characteristic impedance of the probe and the characteristic impedance of the probe determines the reflected signal. In this paper, we derive an equivalent circuit of the probe and using the dielectric constant obtained by measuring the capacitance, the theoretical reflection coefficient of the probe was calculated. In the results, if the engine oil is deteriorated, we can see that the reflection coefficient is increased.

Probe Design and Fabrication for Measuring Near Field (근역장 측정용 프로브의 설계 및 제작)

  • 김병찬;최형도;이애경;이형수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.164-169
    • /
    • 2002
  • This paper reports on design and fabrication of near field probe operating at 300~3000 MHz. Design parameters are extracted by equivalent circuit of E-field probe and simulation using S parameter is performed to predict probes performance. The probe consists of a dipole antenna with 3.25 mm length, a zero bias Schottky diode and a highly resistive transmission line. A TEM cell was used for performance evaluation.

Noninvasive Hematocrit Monitoring Based on Parameter-optimization of a LED Finger Probe

  • Yoon, Gil-Won;Jeon, Kye-Jin
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.107-110
    • /
    • 2005
  • An optical method of measuring hematocrit noninvasively is presented. An LED Light with multiple wavelengths was irradiated on fingernail and transmitted light from the finger was measured to predict hematocrit. A finger probe contained an LED array and detector. Our previous experience showed that prediction accuracy was sensitive to reliability of the finger probe hardware and we optimized the finger probe parameters such as the internal color, detector area and the emission area of a light source based on Design of Experiment. Using the optimized finger probe, we developed a hematocrit monitoring system and tested with 549 persons. For the calibration model with 368 persons, a regression coefficient of 0.74 and a standard deviation of 3.67 and the mean percent error of $8\%$ were obtained. Hematocrits for 181 persons were predicted. We achieved a mean percent error of $8.2\%$ where the regression coefficient was 0.68 and the standard deviation was 3.69.

Characterization of machining quality attributes based on spindle probe, coordinate measuring machine, and surface roughness data

  • Tseng, Tzu-Liang Bill;Kwon, Yongjin James
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.128-139
    • /
    • 2014
  • This study investigates the effects of machining parameters as they relate to the quality characteristics of machined features. Two most important quality characteristics are set as the dimensional accuracy and the surface roughness. Before any newly acquired machine tool is put to use for production, it is important to test the machine in a systematic way to find out how different parameter settings affect machining quality. The empirical verification was made by conducting a Design of Experiment (DOE) with 3 levels and 3 factors on a state-of-the-art Cincinnati Hawk Arrow 750 Vertical Machining Center (VMC). Data analysis revealed that the significant factor was the Hardness of the material and the significant interaction effect was the Hardness + Feed for dimensional accuracy, while the significant factor was Speed for surface roughness. Since the equally important thing is the capability of the instruments from which the quality characteristics are being measured, a comparison was made between the VMC touch probe readings and the measurements from a Mi-tutoyo coordinate measuring machine (CMM) on bore diameters. A machine mounted touch probe has gained a wide acceptance in recent years, as it is more suitable for the modern manufacturing environment. The data vindicated that the VMC touch probe has the capability that is suitable for the production environment. The test results can be incorporated in the process plan to help maintain the machining quality in the subsequent runs.

Effects of the Position of Potential Probe on Ground Resistance Measurements Using the Fall-of-Potential Method (전위강하법에 의한 접지저항측정에 미치는 전위보조전극 위치의 영향)

  • 이복희;어주홍;김성원
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.97-104
    • /
    • 2001
  • The effects of the position of potential probe on the measurements of the ground resistance in the fa11-of-potential method are described. The ground resistance is theoretically calculated by applying the 61.8[%] rule, and then the potential probe is located on the straight line between the grounding electrode to be measured and the current probe. However, sometimes the grounding electrode to be measured and the measuring potential and current probes in on-site test might not be arranged on the straight line with adequate distance because there are building, roadblock construction and other establishments. Provided that the grounding electrode to be measured and the measuring potential probes are out of position on the straight line, the measurement of the ground resistance classically falls into an error and the measured ground resistance should be corrected. In this work, measurements were focused on the grounding electrode system made by the ground rods of 2.4 m long. The measuring error was increased with increasing the angle which is made by the 3-points of the grounding electrode to be measured, the potential anti current probes, and it was a negative. That is, all of the measured ground resistances ware less than the true ground resistance.

  • PDF