• Title/Summary/Keyword: Measuring Device

Search Result 1,517, Processing Time 0.027 seconds

Planar-type Sensor for Measuring the Time-varying Electric Fields (시변전장 측정용 평판형 센서)

  • Lee, Bok-Hee;Kil, Gyung-Suk
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.15-20
    • /
    • 1995
  • This paper deals with the planar-type sensor which can measure the time-varying electric fields. To make an electric field measurement system having a wide bandwidth, a planar-type sensor is proposed. The theoretical principle and design rule of the measuring device are introduced, and also the calibration and application investigations are carried out. From the calibration experiments, the frequency bandwidth of the electric field measurement device ranges from 160 [Hz] to 25 [MHz] and the sensitivity of the sensor is 1.2 [mV/V/m]. As the application experiments, the electric fields caused by the impulse and oscillating transient voltage in high voltage laboratory are measured by the proposed device, and the results are excellent.

  • PDF

The Design and Implementation of IoT-Based Radon Measurement Control System (IoT 기반 라돈 측정 제어시스템 설계 및 구현)

  • Ahn, Heuihak;Gu, Jayeong;Lee, Sangyoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This paper is a IoT-based radon meter control system and a radon meter control method using it. The IoT-based radon meter control system is control system for controlling a radon meter by network-connecting radon meter and a user terminal. The radon measuring device may be provided with a radon sensor to measure a radon value of a preset management target area, it collect and store numerical data. The radon meter control system monitors the condition of the radon meter, it includes control center configured to deliver radon meter management information generated to a user terminal. Also radon measurements to determine the exact amount of radon gas. Therefore, the situation-specific actions based on radon numbers can be promptly implemented to ensure adequate protection for those who are vulnerable to radon and those who live in the area. Condition monitoring allows the radon meter to respond quickly to failure or failure of the radon meter. In addition, it is possible to secure a baseline of radon's influence and to obtain research data to cope with radon by establishing big data with radon measurements.

Development of a Robotic System for Measuring Hole Displacement Using Contact-Type Displacement Sensors (접촉식 변위센서를 이용한 홀 변위 측정 로봇시스템 개발)

  • Kang, Hee-Jun;Kweon, Min-Ho;Suh, Young-Soo;Ro, Young-Shick
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • For the precision measurement of industrial products, the location of holes inside the products, if they exist, are often selected as feature points. The measurement of hole location would be performed by vision and laser-vision sensor. However, the usage of those sensors is limited in case of big change of light intensity and reflective shiny surface of the products. In order to overcome the difficulties, we have developed a hole displacement measuring device using contact-type displacement sensors (LVDTs). The developed measurement device attached to a robot measures small displacement of a hole by allowing its X-Y movement due to the contact forces between the hole and its own circular cone. The developed device consists of three plates which are connected in series for its own function. The first plate is used for the attachment to an industrial robot with ball-bush joints and springs. The second and third plates allow X-Y direction as LM guides. The bottom of the third plate is designed that various circular cones can be easily attached according to the shape of the hole. The developed system was implemented for its effectiveness that its measurement accuracy is less than 0.05mm.

Smart Device Based Localization for Ship Block Logistics

  • Song, Kwon-Soo;Lee, Sangdon;Cho, Doo-Yeoun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1506-1516
    • /
    • 2012
  • In a ship block logistics application, acquisition of locations is required in order to identify location of the ship blocks. A Smart device equipped with a GPS sensor can be used as a mobile client for a ship block logistics application. However the precision of GPS components on a commercial smart device is not high enough. Therefore, using the GPS for localization may produce significant positioning errors in a ship block logistics system. This paper proposes a method to reduce errors in measuring locations using a smart device. Based on the knowledge of how the location information is used in a ship block logistics application, and the predictability of the client's moving line based on geographical layout of a shipyard area, our proposed technique enables a better prediction of the ship blocks location. Performance evaluation shows that the proposed technique can significantly reduce the positional error.

Hand Exoskeleton with PWM Driving Method (초음파 모터 구동방식의 역감제시 기구)

  • Choe, Byeong-Hyeon;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.938-948
    • /
    • 2001
  • In this paper, we present an exoskeletal haptic device named SKK Hand Master. This device is directly driven linkages actuated with small ultrasonic motors. By adopting ultrasonic motors that have advantageous features useful for cybernetic actuators, a compact haptic device containing whole driving packages can be established without additional power transmissions such as tendons. Methods for measuring joint postures and joint torques are developed and a new control strategy called PWM/PS is proposed to overcome intrinsic disadvantages such as hysteresis. Issues regarding design and construction of the device are addressed and several results of experiments for the evaluations of performance are included.

Insect-mimicking Flapping Device Actuated by a Piezoceramic Actuator LIPCA (압전작동기 LIPCA로 구동하는 곤충 모방 날갯짓 기구)

  • Park, Hoon-Cheol;Moh, Syaifuddin;Yoon, Kwang-Joon;Goo, Nam-Seo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.719-722
    • /
    • 2005
  • In this paper, we present out recent progress in the LIPCA (Lightweight Piezo-Composite Actuator) application for actuation of a flapping wing device. The flapping device uses linkage system that can amplify the actuation displacement of LIPCA. The feathering mechanism is also designed and implemented such that the wing can rotate during flapping. The natural flapping-frequency of the device was about 9 Hz, where the maximum flapping angle was achieved. The flapping test under 5 Hz to 15 Hz flapping frequency was performed to investigate the flapping performance by measuring the produced lift and thrust. Maximum lift and thrust were produced when the flapping device was actuated at about the natural flapping-frequency.

  • PDF

Development of Smart Multi-function Ground Resistivity Measuring Device using Arduino in Wind Farm (풍력 발전단지내 아두이노를 활용한 스마트 다기능 대지 고유 저항 측정 장치 개발)

  • Kim, Hong-Yong;Yoon, Dong-Gi;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.65-71
    • /
    • 2019
  • Conventional methods of measuring ground resistance and ground resistance field measurement are used to measure voltage drop according to the resistance value of the site by applying current by installing a constant interval of measurement electrode. If the stratified structure of the site site is unique, errors in boundary conditions will occur in the event of back acid and the analysis of the critical ground resistance in the ground design will show much difference from simulation. This study utilizes the Arduino module and smart ground measurement technology in the convergent information and communication environment to develop a reliable smart land resistance measuring device even if the top layer of land is unique, to analyze the land resistance and accumulate data to predict the change in the age of the land. Considering the topographical characteristics of the site, we propose a ground resistance measuring device and its method of measuring ground resistance so that the auxiliary electrode can be installed by correctly positioning the angle and distance in measuring ground resistance. Not only is ground resistance value obtained through electrodes installed to allow accurate ground resistance values to be selected, but it can also be used as a useful material for installing electrical facilities in similar areas. Moreover, by utilizing reliable data and analyzing the large sections of the site, a precise analysis of the site, which is important in ground design as well as construction cost, is expected to be used much in ground facility design such as potential rise.

A Study on the Reliability of District Heat Measuring Devices for Ground Source Heat Pump Systems (지열원 히트펌프 시스템에 적용되고 있는 난방용 적산열량계의 신뢰성 평가에 관한 연구)

  • Kang, Hee Jeong;Lee, Hyun Su;Jang, Myung Hun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • A ground source heat pump system should be equipped with devices to measure the generated heating or cooling heat amount in Korea. Generally, the heat measuring devices have been developed to estimate consumed heat amount in residential or commercial buildings from a central air-conditioning system or a district heating system. In this study, two representive heat measuring devices used for buildings were selected, and the accuracy of them were experimentally estimated at the ground source heat pump operating conditions. The obtained heat amounts from the heat measuring devices were deviated within 4.3% comparing with the precise values calculated from an accredited test facility. Even though the accumulated heat amount values of the heat measuring devices had a small difference comparing with the precise values, the temperatures of heat measuring devices showed greatly different values comparing with the precise temperature. Therefore, it is highly recommended to develop the heat measuring devices which is appropriate for the ground source heat pump systems.