• Title/Summary/Keyword: Measurement of Radioactivity

Search Result 131, Processing Time 0.021 seconds

Environmental Radioactivity Prior to the Kori Nuclear Power Plant Operation

  • Pak, Chan-Kirl;Yang, Kyung-Rin
    • Nuclear Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 1978
  • The present paper deals with the measurement of the environmental radioactivity at the Kori nuclear Power Plant site area for the Period of six years from December 1970 to December 1976. Gross alpha activity was measured in samples of airborne particulate. Gross beta measurement was performed on soil, water, airborne perticulate, pine needle, precipitation, fallout (gummed acetate paper) and various foodstuffs. Radioactivities of strontium-90 and cesium-l37 were determined by means of radiochemical analyses in samples of spinach, cabbage, barley, rice in terrestrial food, sea eel, shell fish, dulse, green laver in marine product and milk, and of fallout (cloumn), Furthermore, tritum was also analyzed in water sample of well, stream and sea by electrical enrichment.

  • PDF

Evaluation of Radioactive Substance and Measurement of Harmfulness in Drinking Water (먹는 샘물의 방사성물질 측정 및 유해성 평가)

  • Jo, Jungwon;Lee, Sangbok;Nam, Johyeon;Noh, Eunjeong;Beak, Hyunwoo;Lee, Yejin;Lee, Joonse;Choi, Jiwon;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.247-252
    • /
    • 2021
  • As the number of single-person households increases, the consumption of bottled water is increasing. In addition, as the public's interest in radioactivity increases, interest in the field of living radioactivity is also increasing. Since drinking water is an essential element in our daily life, it must be safe from radioactivity. In this study, gamma radiation of drinking spring water was measured and internal exposure dose evaluation was performed to determine its harmfulness. K-40 and uranium-based radioactivity analysis was performed through a high-purity germanium detector, and as a result, drinking water was detected somewhat higher than that of mixing water. Since there is no regulation on the natural radioactivity concentration in Korea, it was compared with the U.S. Environmental Protection Agency Drinking Water Regulations and World Health Organization standard. As a result, there were some items that exceeded standards. Internal exposure was evaluated according to the effective dose formula of ICRP 119. As the result was derived that a maximum of 1.17 mSv per year could be received. This result means that the dose limit for the general public may be exceeded, and it was judged that it is necessary to set an appropriate standard value and present a recommendation value through continuous monitoring in the future.

Development of a Methodology for Estimating Radioactivity Concentration of NORM Scale in Scrap Pipes Based on MCNP Simulation

  • Wanook Ji;Yoomi Choi;Zu-Hee Woo;Young-Yong Ji
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.481-487
    • /
    • 2023
  • Concerning the apprehensions about naturally occurring radioactive materials (NORM) residues, the International Atomic Energy Agency (IAEA) and its member nations have acknowledged the imperative to ensure the radiation safety of NORM industries. Residues with elevated radioactivity concentrations are predominantly produced during NORM processing, in the form of scale and sludge, referred to as technically enhanced NORM (TENORM). Substantial quantities of TENORM residues have been released externally due to the dismantling of NORM processing factories. These residues become concentrated and fixed in scale inside scrap pipes. To assess the radioactivity of scales in pipes of various shapes, a Monte Carlo simulation was employed to determine dose rates corresponding to the action level in TENORM regulations for different pipe diameters and thicknesses. Onsite gamma spectrometry was conducted on a scrap iron pipe from the titanium dioxide manufacturing factory. The measured dose rate on the pipe enabled the estimation of NORM concentration in the pipe scale onsite. The derived action level in dose rate can be applied in the NORM regulation procedure for on-site judgments.

Radioactivity of biological samples of patients treated with 90Y-DOTATOC

  • Marija Z. Jeremic;Milovan D. Matovic;Nenad R. Mijatovic;Suzana B. Pantovic;Dragana Z. Krstic;Tatjana B. Miladinovic;Dragoslav R. Nikezic
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3815-3821
    • /
    • 2023
  • Dosimetric studies in Nuclear Medicine are very important, especially with new therapeutic methods, the number of which has increased significantly with the Theranostic approach (determining diagnostic-therapeutic pairs where similar molecules are labelled with different isotopes in order to diagnose and treat malignant diseases). Peptide receptor radionuclide therapy (PRRT) has been used successfully for many years to treat neuroendocrine tumors (NET). 90Y-DOTATOC is one of the radiopharmaceuticals used frequently in this type of therapy. In this work, blood and urine samples from 13 patients treated with 90Y-DOTATOC were measured by a liquid scintillation beta counter (LSC). Calibration of the beta counter for this type of measurement was done and all results are presented in the paper. The presented paper also provides a methodology for determining the measurement uncertainty for this type of measurement. Immediately after the administration of radiopharmaceuticals, the activity in the blood was different from 6.31% to 88.9% of the applied radioactivity, while 3 h after the termination of the application, the average value of radiopharmaceuticals in the blood was only 3.84%. The activity in the excreted urine depended on the time when the patients urinated after the therapy. It was measured that as much as 58% of the applied radioactivity was excreted in the first urine after the therapy in a patient who urinated 4.5 h after the completed application of the therapy. In most patients, the highest urine activity was in the first 10 h after the application, while the activities after that time were negligibly low. The described methodology of measuring and evaluating activity in blood and excreted urine can be applied to other radiopharmaceuticals used in nuclear medicine. It could be useful for researchers for dosimetric assessments in clinical application of PRRT.

Measurement of MDA of Soil Samples Using Unsuppression System and Compton Suppression of Environmental Radioactivity in Processing Technology (환경 방사능 처리기술에서의 Compton suppression 및 Unsuppression system을 이용한 토양시료의 MDA 측정)

  • Kang, Suman;Im, Inchul;Lee, Jaeseung;Jang, Eunsung;Lee, Mihyeon;Kwon, Kyungtae;Kim, Changtae
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.293-299
    • /
    • 2014
  • Compton suppression device is a device by using the Compton scattering reaction and suppress the Compton continuum portion of the spectrum, so can be made more clear analysis of gamma ray peak in the Compton continuum region. Measurements above background occurs or, radioactivity counts of radioactivity concentration value of $^{40}K$ nuclides $^{137}Cs$ and natural radioactivity artificial radioactivity detected from the surface soil sample, unwanted non-target analysis and interference peak who dotted line you know the calibration of the measurement energy is allowed to apply the (Compton suppression) non-suppressed spectrum inhibition spectrum and (Compton Unsuppression) the background to the measured value of the activity concentration value of the standard-ray source is detected relative to the peak of By measuring according to the different distances cause $^{137}Cs$, and comparative analysis of the Monte Carlo simulation, in order to obtain a detection capability for efficient, looking at the Compton inhibitor, as the CSF value increases with increase in the distance, more It was found that the background due to Compton continuum of the measured spectrum suppression mode Compton unrestrained mode can know that the Compton suppression many were made, using a $^{137}Cs$ is reduced.

Establishing of a rapid analytical method on uranium isotopic ratios for the environmental monitoring around nuclear facilities (원자력 시설 주변 환경 감시를 위한 토양 중 우라늄 동위원소 신속 분석법 확립)

  • Park, Ji-Young;Lim, Jong-Myoung;Lee, Hyun-Woo;Lee, Wanno
    • Analytical Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.134-142
    • /
    • 2018
  • The uranium isotopic ratio in environmental samples around nuclear facilities is important because it reveals information regarding illegal activities or anthropogenic pollution. Determination of uranium isotopes, however, is a challenging task requiring much labor and time because of the complex separation procedures and lengthy process. In this study, a rapid determination method for uranium isotopes in environmental samples was developed using. The sample was completely decomposed using the alkali fusion method. The separation procedure using extraction chromatography (UTEVA) was simplified in a single step without any further removal process for Si and major matrix elements. The established method can be completed within 3 h from sample dissolution to ICP-MS measurement. Most matrix elements and uranium isotopes in the soil samples were well separated and purified. Five types of were used to assess the method's accuracy and precision for a rapid uranium analysis method. The analytical accuracy for all CRM samples ranged from 95.1 % to 97.8 %, and the relative standard deviation was below 3.9 %. From the analytical results, one may draw conclusions that the evaluated method for uranium isotopes using alkali-fusion, the extraction chromatography process, and ICP-MS measurements is fast and fairly reliable owing to its recovering efficiencies. Thus, it is expected that the evaluated method can contribute to the improvement of environmental monitoring ability.

Estimation of natural radionuclide and exhalation rates of environmental radioactive pollutants from the soil of northern India

  • Devi, Vandana;Chauhan, Rishi Pal
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1289-1296
    • /
    • 2020
  • The estimation of radioactivity level is vital for population health risk assessment and geological point of view and can be evaluated as rate of exhalation and source concentration (226Ra, 232Th and 40K). The present study deals with the soil samples for investigation of radionuclides content and exhalation rates of radon -thoron gas from different sites in northern Haryana, India. Absorbed dose and associated index estimated in the present study are the measures of environmental radioactivity to inhalation dose. Effective doses received by different tissues and organs by considering different occupancy and conditions are also measured. Exhalation rates of radon and thoron are measured with active scintillation monitors based on alpha spectroscopy namely scintillation radon (SRM) and thoron (STM) monitors respectively. Sample height was optimized before measurement of thoron exhalation rate using STM. Average values of radon and thoron exhalation are found 16.6 ± 0.7 mBqkg-1h-1 and 132.1 ± 2.6 mBqm-2s-1 respectively. Also, a simple approach was also adopted, to evaluate the thoron exhalation which accomplished a lot of challenges, the results are compared with the data obtained experimentally. The study is useful in the nationwide mapping of radon and thoron exhalation rates for understanding the environmental radioactivity status.

A Study on the Radioactivity Analysis of Decommissioning Concrete Using Monte Carlo Simulation (Monte Carlo 모사기법을 이용한 해체 콘크리트의 방사능 분석법 연구)

  • 서범경;김계홍;정운수;이근우;오원진;박진호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.43-51
    • /
    • 2004
  • In order to decommission the shielding concrete of KRR(Korea Research Reactor) -1&2, it must be exactly determined activated level and range by neutron irradiation during operation. To determine the activated level and range, it must be sampled and analyzed the core sample. But, there are difficulties in sample preparation and determination of the measurement efficiency by self-absorption. In the study, the full energy efficiency of the HPGe detector was compared with the measured value using standard source and the calculated one using Monte Carlo simulation. Also. self-absorption effects due to the density and component change of the concrete were calculated using the Monte Carlo method. Its results will be used radioactivity analysis of the real concrete core sample in the future.

  • PDF

Corrections of Self-Absorption Effect Using the Monte Carlo Method in the Radioactivity Analysis of Environmental Samples (환경시료의 방사능 분석에서 Monte Carlo 방법을 이용한 자체흡수 효과 보정)

  • Seo, Bum-Kyoung;Lee, Dae-Won;Lee, Kil-Yong;Yoon, Yoon-Yeol;Yang, Tae-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2001
  • In the low level radioactivity measurement, such as environmental radioactivity, there were used commonly cylindrical and Marinelli type beakers by means of measurement container. If there are differences in the matrix density or sample height between standard source and sample, it must be determined full energy peak efficiency considering self absorption effect. In this paper, we compared measured efficiency with calculated full energy peak efficiencies in the HPGe detector using the Monte Carlo method. For cylindrical container, we calculated the variation of the efficiency with sample height. Also, we calculated the variation of the detection efficiency with apparent density in the cylindrical and Marinelli container. It was seen that it need to be corrected for self absorption in the energy range of below 1000keV. Also, in order to verify the validity of calculation, we compared the calculated value with reference value using NIST SRM 4353 reference soil.

  • PDF