• Title/Summary/Keyword: Measurement of Honeybees Movement

Search Result 2, Processing Time 0.022 seconds

A Study on the System for measuring the Activity of Honeybees inside and outside the Beehive

  • Kim, Joon Ho;Han, Wook;Chung, Wonki;Mo, Changyeon;Han, Xiongzhe;Kim, Subae
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.511-517
    • /
    • 2022
  • Recently, due to rapid climate change, the population of honey bees has decreased, posing a great threat to the existence of the Earth's ecosystem. In particular, the colony collapse phenomenon in which bees disappeared nationwide in early 2022 had devastating consequences for beekeepers. In order to solve the problems of beekeeping due to climate change, it is urgent to develop a system that can monitor the situation inside the hive through various IoT sensors. This paper develops a system that can measure the activity of bees inside the hive and uses it to measure the number of times of entry and exit of the hive. The data measured by the developed system can be monitored in real time on a smartphone through the cloud server. The system developed in this paper can monitor the ecology of bees according to climate change and measure internal and external bee activities. Using this method, it is possible to check in advance for the colony collapse phenomenon in which bees disappeared in early 2022. This is very meaningful in that it presents an alternative that can identify the cause of the problem through early detection.

A study on the honeycomb entry and exit counting system for measuring the amount of movement of honeybees inside the beehive (벌통 내부 꿀벌 이동량 측정을 위한 벌집 입·출입 계수 시스템 연구)

  • Kim, Joon Ho;Seo, Hee;Han, Wook;Chung, Wonki
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.857-862
    • /
    • 2021
  • Recently, rapid climate change has had a significant impact on the bee ecosystem. The decrease in the number of bees and the change in the flowering period have a huge impact on the harvesting of beekeepers. Accordingly, attention is focused on smart beekeeping, which introduces IoT technology to beekeeping. According to the characteristics of beekeeping, it is impossible to continuously observe the beehive in the hive with the naked eye, and the condition of the hive is mostly dependent on knowledge from experience. Although a system that can measure partly through sensors such as temperature/humidity change inside the hive and measurement of the amount of CO2 is applied, there is no research on measuring the movement path and amount of movement of bees inside the beehive. Part of the migration of honeybees inside the hive can provide basic information to predict the most important cleavage time in beekeeping. In this study, we propose a device that detects the movement path of bees and measures and records data entering and exiting the hive in real time. The device proposed in this study was developed according to the honeycomb standard of the existing beehive so that beekeeping farms could use it. The development method used a photodetector that can detect the movement of bees to configure 16 movement paths and to detect the movement of bees in real time. If the measured honeybee movement status is utilized, the problem of directly observing the colony with the naked eye in order not to miss the swarming time can be solved.