• Title/Summary/Keyword: Measurement algorithm

Search Result 2,913, Processing Time 0.031 seconds

The Analysis of Dose in a Rectum by Multipurpose Brachytherapy Phantom (근접방사선치료용 다목적 팬톰을 이용한 직장 내 선량분석)

  • Huh, Hyun-Do;Kim, Seong-Hoon;Cho, Sam-Ju;Lee, Suk;Shin, Dong-Oh;Kwon, Soo-Il;Kim, Hun-Jung;Kim, Woo-Chul;K. Loh John-J.
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.223-229
    • /
    • 2005
  • Purpose: In this work we designed and made MPBP(Multi Purpose Brachytherapy Phantom). The MPBP enables one to reproduce the same patient set-up in MPBP as the treatment of the patient and we tried to get an exact analysis of rectal doses in the phantom without need of in-vivo dosimetry. Materials and Methods: Dose measurements were tried at a point of rectum 1, the reference point of rectum, with a diode detector for 4 patients treated with tandem and ovoid for a brachytherapy of a cervix cancer. Total 20 times of rectal dose measurements were made with 5 times a patient. The set-up variation of the diode detector was analyzed. The same patient set-ups were reproduced in self-made MPBP and then rectal doses were measured with TLD. Results: The measurement results of the diode detector showed that the set-up variation of the diode detector was the maximum $11.25{\pm}0.95mm$ in the y-direction for Patient 1 and the maximum $9.90{\pm}4.50mm,\;20.85{\pm}4.50mm,\;and\;19.15{\pm}3.33mm$ in the z-direction for Patient 2, 3, and 4, respectively. Un analyzing the degree of variation in 3 directions the more variation was showed in the z-direction than x- and y-direction except Patient 1. The results of TLD measurements in MPBP showed the relative maximum error of 8.6% and 7.7% at a point of rectum 1 for Patient 1 and 4, respectively and 1.7% and 1.2% for Patient 2 and 3, respectively. The doses measured at R1 and R2 were higher than those calculated except R point of Patient 2. this can be thought to related to the algorithm of dose calculation, whcih corrects for air and water but is guessed not to consider the correction for the scattered rays, but by considering the self-error (${\pm}5%$) TLD has the relative error of values measured and calculated was analyzed to be in a good agreement within 15%. Conclusion: The reproducibility of dose measurements under the same condition as the treatment could be achieved owing to the self-made MPMP and the dose at the point of interest could be analyzed accurately. If a treatment is peformed after achieving dose optimization using the data obtained in the phantom, dose will be able to be minimized to important organs.

Inhomogeneity correction in on-line dosimetry using transmission dose (투과선량을 이용한 온라인 선량측정에서 불균질조직에 대한 선량 보정)

  • Wu, Hong-Gyun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.139-147
    • /
    • 1998
  • Purpose: Tissue inhomogeneity such as lung affects tumor dose as well as transmission dose in new concept of on-line dosimetry which estimates tumor dose from transmission dose using the new algorithm. This study was carried out to confirm accuracy of correction by tissue density in tumor dose estimation utilizing transmission dose. Methods: Cork phantom (CP, density $0.202\;gm/cm^3$) having similar density with lung parenchyme and polystyrene phantom (PP, density $1.040\;gm/cm^3$) having similar density with soft tissue were used. Dose measurement was carried out under condition simulating human chest. On simulating AP-PA irradiation, PPs with 3 cm thickness were placed above and below CP, which had thickness of 5, 10, and 20 cm. On simulating lateral irradiation, 6 cm thickness of PP was placed between two 10 cm thickness CPs additional 3 cm thick PP was placed to both lateral sides. 4, 6, and 10 MV x-ray were used. Field size was in the range of $3{\times}3$ cm through $20{\times}20$ cm, and phantom-chamber distance (PCD) was 10 to 50 cm. Above result was compared with another sets of data with equivalent thickness of PP which was corrected by density. Result: When transmission dose of PP was compared with equivalent thickness of CP which was corrected with density, the average error was 0.18 (${\pm}0.27$) % for 4 MV, 0.10 (${\pm}0.43$) % for 6 MV, and 0.33 (${\pm}0.30$) % for 10 MV with CP having thickness of 5 cm. When CP was 10 cm thick, the error was 0.23 (${\pm}0.73$) %, 0.05 (${\pm}0.57$) %, and 0.04 (${\pm}0.40$) %, while for 20 cm, error was 0.55 (${\pm}0.36$) %, 0.34 (${\pm}0.27$) %, and 0.34 (${\pm}0.18$) % for corresponding energy. With lateral irradiation model, difference was 1.15 (${\pm}1.86$) %, 0.90 (${\pm}1.43$) %, and 0.86 (${\pm}1.01$) % for corresponding energy. Relatively large difference was found in case of PCD having value of 10 cm. Omitting PCD with 10 cm, the difference was reduced to 0.47 (${\pm}$1.17) %, 0.42 (${\pm}$0.96) %, and 0.55 (${\pm}$0.77) % for corresponding energy. Conclusion When tissue inhomogeneity such as lung is in tract of x-ray beam, tumor dose could be calculated from transmission dose after correction utilizing tissue density.

  • PDF

Measuring the Public Service Quality Using Process Mining: Focusing on N City's Building Licensing Complaint Service (프로세스 마이닝을 이용한 공공서비스의 품질 측정: N시의 건축 인허가 민원 서비스를 중심으로)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.35-52
    • /
    • 2019
  • As public services are provided in various forms, including e-government, the level of public demand for public service quality is increasing. Although continuous measurement and improvement of the quality of public services is needed to improve the quality of public services, traditional surveys are costly and time-consuming and have limitations. Therefore, there is a need for an analytical technique that can measure the quality of public services quickly and accurately at any time based on the data generated from public services. In this study, we analyzed the quality of public services based on data using process mining techniques for civil licensing services in N city. It is because the N city's building license complaint service can secure data necessary for analysis and can be spread to other institutions through public service quality management. This study conducted process mining on a total of 3678 building license complaint services in N city for two years from January 2014, and identified process maps and departments with high frequency and long processing time. According to the analysis results, there was a case where a department was crowded or relatively few at a certain point in time. In addition, there was a reasonable doubt that the increase in the number of complaints would increase the time required to complete the complaints. According to the analysis results, the time required to complete the complaint was varied from the same day to a year and 146 days. The cumulative frequency of the top four departments of the Sewage Treatment Division, the Waterworks Division, the Urban Design Division, and the Green Growth Division exceeded 50% and the cumulative frequency of the top nine departments exceeded 70%. Higher departments were limited and there was a great deal of unbalanced load among departments. Most complaint services have a variety of different patterns of processes. Research shows that the number of 'complementary' decisions has the greatest impact on the length of a complaint. This is interpreted as a lengthy period until the completion of the entire complaint is required because the 'complement' decision requires a physical period in which the complainant supplements and submits the documents again. In order to solve these problems, it is possible to drastically reduce the overall processing time of the complaints by preparing thoroughly before the filing of the complaints or in the preparation of the complaints, or the 'complementary' decision of other complaints. By clarifying and disclosing the cause and solution of one of the important data in the system, it helps the complainant to prepare in advance and convinces that the documents prepared by the public information will be passed. The transparency of complaints can be sufficiently predictable. Documents prepared by pre-disclosed information are likely to be processed without problems, which not only shortens the processing period but also improves work efficiency by eliminating the need for renegotiation or multiple tasks from the point of view of the processor. The results of this study can be used to find departments with high burdens of civil complaints at certain points of time and to flexibly manage the workforce allocation between departments. In addition, as a result of analyzing the pattern of the departments participating in the consultation by the characteristics of the complaints, it is possible to use it for automation or recommendation when requesting the consultation department. In addition, by using various data generated during the complaint process and using machine learning techniques, the pattern of the complaint process can be found. It can be used for automation / intelligence of civil complaint processing by making this algorithm and applying it to the system. This study is expected to be used to suggest future public service quality improvement through process mining analysis on civil service.