• 제목/요약/키워드: Measurement Radiation dose

검색결과 667건 처리시간 0.027초

Uncertainty Assessment: Relative versus Absolute Point Dose Measurement for Patient Specific Quality Assurance in EBRT

  • Mahmood, Talat;Ibrahim, Mounir;Aqeel, Muhammad
    • 한국의학물리학회지:의학물리
    • /
    • 제28권3호
    • /
    • pp.111-121
    • /
    • 2017
  • Verification of dose distribution is an essential part of ensuring the treatment planning system's (TPS) calculated dose will achieve the desired outcome in radiation therapy. Each measurement have uncertainty associated with it. It is desirable to reduce the measurement uncertainty. A best approach is to reduce the uncertainty associated with each step of the process to keep the total uncertainty under acceptable limits. Point dose patient specific quality assurance (QA) is recommended by American Association of Medical Physicists (AAPM) and European Society for Radiotherapy and Oncology (ESTRO) for all the complex radiation therapy treatment techniques. Relative and absolute point dose measurement methods are used to verify the TPS computed dose. Relative and absolute point dose measurement techniques have a number of steps to measure the point dose which includes chamber cross calibration, electrometer reading, chamber calibration coefficient, beam quality correction factor, reference conditions, influences quantities, machine stability, nominal calibration factor (for relative method) and absolute dose calibration of machine. Keeping these parameters in mind, the estimated relative percentage uncertainty associated with the absolute point dose measurement is 2.1% (k=1). On the other hand, the relative percentage uncertainty associated with the relative point dose verification method is estimated to 1.0% (k=1). To compare both point dose measurement methods, 13 head and neck (H&N) IMRT patients were selected. A point dose for each patient was measured with both methods. The average percentage difference between TPS computed dose and measured absolute relative point dose was 1.4% and 1% respectively. The results of this comparative study show that while choosing the relative or absolute point dose measurement technique, both techniques can produce similar results for H&N IMRT treatment plans. There is no statistically significant difference between both point dose verification methods based upon the t-test for comparing two means.

치과용 이동형 방사선장치의 선량평가 (Evaluation of Radiation Doses of Dental Portable Equipment)

  • 박훈희;강병삼
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권5호
    • /
    • pp.445-450
    • /
    • 2018
  • We aim to evaluate safety of radiation by measuring leakage dose and patient(phantom) incident dose of ZEN-PX II dental portable equipment developed by G company. Measurement for leakage dose of equipment is conducted on the top, at the bottom, on the left, on the right and at the back. Dose measurement incident on the subject with the area dosimeter when using the phantom and measurement the leakage dose of equipment when using the phantom are evaluated. Comparing the right with the highest leakage dose as a 0 cm, 25 cm, 50 cm, 75 cm and 100 cm dose measurement at the measurement height of 100 cm, 64.2 uR was reduced to 47.3 uR in the senser mode 0.32sec. Even in film mode it was measured at 414.4 uR and about 27% lower at 162.6 uR. As the result of this study, when the irradiation time is 2 sec the right side dose is 290.5 uR and sensor mode is 0.32 sec the right side dose is 64.2 uR.

MOSFET 검출기의 방사선 측정 기법 (A Methodology of Radiation Measurement of MOSFET Dosimeter)

  • 노영찬;이상용;강필현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.159-162
    • /
    • 2009
  • The necessity of radiation dosimeter with precise measurement of radiation dose is increased and required in the field of spacecraft, radiotheraphy hospital, atomic plant facility, etc. where radiation exists. Until now, a low power commercial metal-oxide semiconductor(MOS) transistor has been tested as a gamma radiation dosimeter. The measurement error between the actual value and the measurement one can occur since the MOSFET(MOS field-effect transistor) dosimeter, which is now being used, has two gates with same width. The measurement value of dosimeter depends on the variation of threshold voltage, which can be affected by the environment such as temperature. In this paper, a radiation dosimeter having a pair of MOSFET is designed in the same silicon substrate, in which each of the MOSFETs is operable in a bias mode and a test mode. It can measure the radiation dose by the difference between the threshold voltages regardless of the variation of temperature.

  • PDF

국내 수처리시설 종사자 작업유형에 따른 외부피폭방사선량 평가 (Assessment of External Radiation Dose for Workers in Domestic Water Treatment Facility According to the Working Type)

  • 전성훈;이성연;김혁재;김민성;김광표
    • 방사선산업학회지
    • /
    • 제17권2호
    • /
    • pp.151-160
    • /
    • 2023
  • The International Atomic Energy Agency (IAEA) proposes 11 industries that handle Naturally Occurring Radioactive Material (NORM) that are considered to need management. A water treatment facility is one of the above industries that takes in groundwater and produces drinking water through a water treatment process. Groundwater can accumulate natural radionuclides such as uranium and thorium in raw water by contacting rocks or soil containing natural radionuclides. Therefore, there is a possibility that workers in water treatment facilities will be exposed due to the accumulation of natural radionuclides in the water treatment process. The goal of this study is to evaluate the external radiation dose according to the working type of workers in water treatment facilities. In order to achieve the above goal, the study was conducted by dividing it into 1) analysis of the exposure environment, 2) measurement of the external radiation dose rate 3) evaluation of the external radiation dose. In the stage of analyzing the exposure environment, major processes that are expected to occur significantly were derived. In the measurement stage of the external radiation dose rate, a map of the external radiation dose rate was prepared by measuring the spatial radiation dose rate in major processes. Through this, detailed measurement points were selected considering the movement of workers. In the external radiation dose evaluation stage, the external radiation dose was evaluated based on the previously derived external radiation dose rate and working time. As a result of measuring the external radiation dose rate at the detailed points of water treatment facilities A to C, it was 1.90×10-1 to 3.75×100 μSv h-1, and the external radiation dose was analyzed as 3.27×10-3 to 9.85×10-2 mSv y-1. The maximum external radiation dose appeared during the disinfection and cleaning of activated carbon at facility B, and it is judged that natural radionuclides were concentrated in activated carbon. It was found that the external radiation dose of workers in the water treatment facility was less than 1mSv y-1, which is about 10% of the dose limit for the public. As a result of this study, it was found that the radiological effect of external radiation dose of domestic water treatment facility workers was insignificant. The results are expected to contribute as background data to present optimized safety management measures for domestic NORM industries in the future.

REAL-TIME PERSONAL DOSE MEASUREMENT AND MANAGEMENT SYSTEM RESEARCH IN CHINA

  • Zhang, Z.Y.;Cheng, C.;Liu, Z.S.;Yang, H.T.;Deng, C.M.;Zhang, X.;Guo, Z.J.
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.281-286
    • /
    • 2001
  • The composition and design of a real-time personal dose measurement and management system are described in this paper. Accordingly, some pertinent hardware circuits and software codes including their operation modes have also been presented.

  • PDF

비행고도 상에서의 우주방사선 관측 및 모델 비교 (Radiation Dose Measurement and Model Comparison at the Flight Level)

  • 이원형;김지영;장근일
    • 한국항공운항학회지
    • /
    • 제26권2호
    • /
    • pp.91-97
    • /
    • 2018
  • High-energy charged particles are comprised of galactic cosmic rays and solar energetic particles which are mainly originated from the supernova explosion, active galactic nuclei, and the Sun. These primary charged particles which have sufficient energy to penetrate the Earth's magnetic field collide with the Earth's upper atmosphere, that is $N_2$ and $O_2$, and create secondary particles and ionizing radiation. The ionizing radiation can be measured at commercial flight altitude. So it is recommended to manage radiation dose of aircrew as workers under radiation environment to protect their health and safety. However, it is hard to deploy radiation measurement instrument to commercial aircrafts and monitor radiation dose continuously. So the numerical model calculation is performed to assess radiation exposure at flight altitude. In this paper, we present comparison result between measurement data recorded on several flights and estimation data calculated using model and examine the characteristics of the radiation environment in the atmosphere.

Assessment of Radiation Dose from Radioactive Wedge Filters during High-Energy X-Ray Therapy

  • Back, Geum-mun;Park, Sung Ho;Kim, Tae-Hyung
    • 한국의학물리학회지:의학물리
    • /
    • 제28권2호
    • /
    • pp.45-48
    • /
    • 2017
  • This paper evaluated the amount of radiation generated by wedge filters during radiation therapy using a high-energy linear accelerator, and the dose to the worker during wedge replacement. After 10-MV photon beam was irradiated with wedge filter, the wedge was removed from the linear accelerator, and the dose rate and energy spectrum were measured. The initial measurement was approximately 1 uSv/h, and the radiation level was reduced to 0.3 uSv/h after 6 min. The effective half-life derived from the dose rate measurement was approximately 3.5 min, and the influence of AI-28 was about 53%. From the energy spectrum measurements, a peak of 1,799 keV was measured for AI-28, while the peak for Co-58 was not measured in the control room. The peaks for Au-106 and Cd-105 were found only measurement was done without wedge removement from the linear accelerator. The additional doses received by the radiation worker during wedge replacement were estimated to be 0.08-0.4 mSv per year.

속중성자선의 선량분포에 관한 연구 (Fast Neutron Beam Dosimetry)

  • 이효남;지영훈;지광수;이동한
    • 대한방사선치료학회지
    • /
    • 제9권1호
    • /
    • pp.71-81
    • /
    • 1997
  • I. Objective and Importance of the Project We have been using MC-50 cyclotron and NT-50 neutron therapy machine for treating cancer patients since 1986 at Korea Cancer Center Hospital. It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine (Task Group 18), European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induce the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. II. Scope and Contents of the Project For establishing a unique technique of measurement and inventing a standard method of measurement of fast neutron beam, 1. to grasp the physical characteristics of neutron therapy machine 2. to study the principles for measrement of fast neutron beam 3. to get the dose distribution (dose rate, percent-depth dose, flatness etc) throught the actual measurement 4. to compare our data with those being cited world-widely.

  • PDF

엑스선의 조사시간에 따른 형광유리선량계의 빌드업 특성 (Buildup Characteristics of Radiophotoluminescent Glass Dosimeters with Exposure Time of X-ray)

  • 권대철
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권5호
    • /
    • pp.256-263
    • /
    • 2017
  • By using the buildup characteristics of the radiophotoluminescence glass dosimeter(RPLGD), it is aimed to help the measurement of the accurate dose by measuring the radiation dose according to the time of the glass element. Five glass elements were arranged on the table and the source to image receptor distance(SID) was set to 100 cm for the build-up radiation dose measurement of the fluorescent glass dosimeter glass element(GD-352M). Radiation doses and saturation rates were measured over time according to irradiation time, with the tube voltage (30, 60, 90 kVp) and tube current (50, 100 mAs) Repeatability test was repeated ten times to measure the coefficient of variation. The radiation dose increased from 0.182 mGy to 12.902 mGy and the saturation rate increased from 58.3% with increasing exposure condition and time. The coefficient of variation of the glass elements of the fluorescent glass dosimeter was ranged from 0.2 to 0.77 according to the X - ray exposure conditions. X - ray exposure showed that the radiation dose and saturation rate were increased with buildup characteristics, and degeneration of glass elements was not observed. The reproducibility of the variation coefficient of the radiation generator was included within the error range and the reproducibility of the radiation dose was excellent.