• Title/Summary/Keyword: Measured data

Search Result 18,700, Processing Time 0.062 seconds

Adjustment Algorithms for the Measured Data of Stereo Vision Methods for Measuring the Height of Semiconductor Chips (반도체 칩의 높이 측정을 위한 스테레오 비전의 측정값 조정 알고리즘)

  • Kim, Young-Doo;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • Lots of 2D vision algorithms have been applied for inspection. However, these 2D vision algorithms have limitation in inspection applications which require 3D information data such as the height of semiconductor chips. Stereo vision is a well known method to measure the distance from the camera to the object to be measured. But it is difficult to apply for inspection directly because of its measurement error. In this paper, we propose two adjustment methods to reduce the error of the measured height data for stereo vision. The weight value based model is used to minimize the mean squared error. The average value based model is used with simple concept to reduce the measured error. The effect of these algorithms has been proved through the experiments which measure the height of semiconductor chips.

Reflectance Characteristics of the Tobacco Leaves (잎담배의 광반사 특성)

  • Cho, H.K.;Kwon, Y.;Bang, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.3
    • /
    • pp.247-257
    • /
    • 1994
  • Optical properties of the tobacco leaves were determined. Surface colors and reflectance characteristics of the flue-cured variety and the Burley variety with thin and thick leaves were measured. Color was measured by CIE colorimeter and reflectance was measured with a laboratory built reflectance meter utilizing optical bandpass filters whose center wavelengths are from 400 to 700 nm at intervals of 50 nm. The resulting data indicated that the measured color and reflectance would be useful in inspecting tobacco. However no single optical data could be used to successfully grade tobacco leaves.

  • PDF

Estimation of track irregularity using NARX neural network (NARX 신경망을 이용한 철도 궤도틀림 추정)

  • Kim, Man-Cheol;Choi, Bai-Sung;Kim, Yu-Hee;Shin, Soob-Ong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.275-280
    • /
    • 2011
  • Due to high-speed of trains, the track deformation increases rapidly and may lead to track irregularities causing the track stability problem. To secure the track stability, the continual inspection on track irregularities is required. The paper presents a methodology for identifying track irregularity using the NARX neural network considering non-linearity in the train structural system. A simulation study has been carried out to examine the proposed method. Acceleration time history data measured at a bogie were re-sampled to every 0.25m track irregularity. In the simulation study, two sets of measured data were simulated. The second data set was obtained by a train with 10% more mass than the one for the first data set. The first set of simulated data was used to train the series-parallel mode of NARX neural network. Then, the track irregularities at the second time period are identified by using the measured acceleration data. The closeness of the identified track irregularity to the actual one is evaluated by PSD and RMSE.

  • PDF

Distribution and Variation Characteristic of Solar Radiation Resources in Korea (국내 태양복사 분포 및 변화특성)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.200.1-200.1
    • /
    • 2010
  • Solar energy is one of the most promising energy resources in the future. For the application and dissemination of solar energy technologies in various fields, reliable data sets of solar irradiation are needed for engineers, researchers, businessmen, and policy makers. Global horizontal solar radiation is needed for the use of flat plate collector, solar domestic hot water system, photovoltaic devices and passive systems like green house. In many countries, solar radiation data accumulated for more then 40 or 50 years and typical weather data are published with average of more then 30 years. In Korea, those global total radiations are measured for about 30 years. With the connections of computer network, measured data could be transmitted to the central control system at key station through Ethernet lines. The data acquisition systems are connected to be automatically controlled by the monitoring network. Global horizontal solar radiation data 16 locations were measured and averaged from 1982 to 2008.

  • PDF

The Study on Interrelationship Analysis of Domestic Road Using PSD (PSD선도를 이용한 국내노면의 상관성 분석에 관한 연구)

  • Kim, Chan-Jung;Kwon, Seong-Jin;Lee, Bong-Hyun;Kim, Hyun-Chul;Bae, Chul-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.806-813
    • /
    • 2006
  • An important factor of vibration test using MAST(multi axial simulation table) system is the reliance of input excitation source. Generally the generation of input excitation source is obtained by the measured data on special road in proving ground. The measured data on special road have more exciting energy than the data of real fields, therefore the time and expense for test can be reduced. But the magnitude of input excitation source must be defined by comparison with the excited energy on real field. The object of this paper makes the data base of domestic roads for the definition of input excitation source which is obtained by the measured data on special road in proving ground. These real field data on domestic roads are analyzed by the power spectral density and interrelationship index.

Analysis and Calculation of Global Hourly Solar Irradiation Based on Sunshine Duration for Major Cities in Korea (국내 주요도시의 일조시간데이터를 이용한 시간당전일사량 산출 및 분석)

  • Lee, Kwan-Ho;Sim, Kwang-Yeal
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.16-21
    • /
    • 2010
  • Computer simulation of buildings and solar energy systems are being used increasingly in energy assessments and design. This paper discusses the possibility of using sunshine duration data instead of global hourly solar irradiation (GHSI) data for localities with abundant data on sunshine duration. For six locations in South Korea where global radiation is currently measured, the global radiation was calculated using Sunshine Duration Radiation Model (SDRM), compared and analyzed. Results of SDRM has been compared with the measured data on the coefficients of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). This study recommends the use of sunshine duration based irradiation models if measured solar radiation data is not available.

A Study on Estimating Method of Vehicle Fuel Consumption Using GPS Data (GPS 데이터를 이용한 차량의 연료소모량 연산법 연구)

  • Ko, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.949-956
    • /
    • 2020
  • It's important to measure fuel consumption of vehicles. It's possible to monitor green house gas from vehicles for various traffic conditions with the measured data. It's effective to eco-drive for drivers with fuel consumption data also. There's a display of fuel consumption in the modern vehicles, but it's not useful to get the data from the display. An estimating method for fuel consumption of a vehicle is suggested in the study. It's a simple but an effective method using GPS data. The GPS data(speed, acceleration, road slope) and vehicle data(weight, frontal area, model year, certified fuel economy) is necessary to estimate the fuel consumption for the method. It calculates driving resistance force to estimate engine power. Then it estimates the necessary fuel consumption to maintain the engine power with fuel-power conversion factor. The conversion factor is corrected with certified fuel economy, model year and rated power. The precision of the methods is checked with road test data. The test driving data was measured with GPS and OBD. The error of the estimated fuel consumption for the measured one is about 1.8%. But the error is large for the 1000 and 100 data number from the total data number of about 10,000. The error is from the larger change range of the GPS data than the one of the measured fuel consumption data. But the proposed estimating method is useful to percept the fuel consumption change for better fuel economy with simple gadget like smart phone or other GPS instruments.

A Portable Potentiostat with Bluetooth Communication for Square wave Voltammetry Measurement (네모파 전압전류법 측정을 위한 블루투스 기반 휴대형 포텐쇼스탯)

  • Shim, Wonsik;Han, Ji-Hoon;Kim, Suyun;Kwon, Hyun Jeong;Pak, Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.622-627
    • /
    • 2016
  • This paper describes the development of a portable potentiostat which can perform square wave voltammetry on electrochemical sensors and wireless transmission of the measured data to a smartphone using Bluetooth. The potentiostat consists of a square wave potential pulse generation circuit for applying the potential pulse to the electrochemical sensor, a reduction/oxidation (or redox) current measurement circuit, and Bluetooth for wireless data transmission to an Android-based smartphone. The measured data are then processed to show the output graph on the smart phone screen in real time. This data transformation into a graph is carried out by developing and installing a simple transformation application software in the Android-based smartphone. This application software also enables the user to set and change the measurement parameters such as the applied voltage range and measured current range at user's convenience. The square voltammetry output data measured with the developed portable potentiostat were almost same as the data of the commercial potentiostat. The measured oxidation peak current with the commercial potentiostat was $11.35{\mu}A$ at 0.26 V and the measured oxidation peak current with the developed system was $12.38{\mu}A$ at 0.25 V. This proves that performance of the developed portable measurement system is comparable to the commercial one.

Validation of self-reported height and weight in fifth-grade Korean children

  • Lee, Bora;Chung, Sang-Jin;Lee, Soo-Kyung;Yoon, Jihyun
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.326-329
    • /
    • 2013
  • Height and weight are important indicators to calculate Body Mass Index (BMI); measuring height and weight directly is the most exact method to get this information. However, it is ineffective in terms of cost and time on large population samples. The aim of our study was to investigate the validity of self-reported height and weight data compared to our measured data in Korean children to predict obese status. Four hundred twenty-two fifth-grade (mean age $10.5{\pm}0.5$ years) children who had self-reported and measured height and weight data were final subjects for this study. Overweight/obese was defined as a BMI of or above the 85th percentile of the gender-specific BMI for age in the 2007 Korean National Growth Charts or a BMI of 25 or higher (underweight : < 5th, normal : ${\geq}5th$ to < 85th, overweight : ${\geq}85th$ to < 95th). The differences between self-reported and measured data were tested using paired t-test. Differences based on overweight/obese status were tested using analysis of variance (ANOVA) and linear trends. Pearson's correlation and Cohen's kappa were tested to examine agreements between the self-reported and measured data. Although measured and self-reported height, weight and BMI were significantly different and children tended to overreport their height and underreport their weight, the correlation between the two methods of height, weight and BMI were high (r = 0.956, 0.969, 0.932, respectively; all P < 0.001), and both genders reported their overweight/non-overweight status accurately (Cohen's kappa = 0.792, P < 0.001). Although there were differences between the self-reported and our measured methods, the self-reported weight and height was valid enough to classify overweight/obesity status correctly, especially in non-overweight/obese children. Due to bigger underestimation of weight and overestimation of height in obese children, however, we need to be aware that the self-reported anthropometric data were less accurate in overweight/obese children than in non-overweight/obese children.

Reset of Measurement Control Criteria for Monitoring Data through the Analysis of Measured Data (계측데이터 분석을 통한 모니터링 데이터의 계측관리기준 재설정)

  • Chung, Chul-Hun;An, Ho-Hyun;Shin, Soo-Bong;Kim, Yu-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.105-113
    • /
    • 2014
  • Most operating civil structures measure response data continuously by various types of sensors and evaluate their health conditions. Measurement control criteria for such civil structures are usually defined in the first operating stage by experts working at a construction or engineering company. However, a few studies have been carried to examine the adequacy of these measurement control criteria based on the actual measured data. The paper introduces a systematic way of resetting the measurement control criteria for the measured monitoring data based on the statistical aspects of the measured data. The proposed statistical approach has been examined with actually measured time-history data from a bridge structure.