• Title/Summary/Keyword: Measured bearing capacity

Search Result 185, Processing Time 0.027 seconds

The Effect of Induced Weight Bearing Method Using a Cane on Weight Bearing Distribution in Children with Spastic Hemiplegic Cerebral Palsy

  • Se-Hee Park;Ji-Young Choi;Sung-Min Son
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.2
    • /
    • pp.48-52
    • /
    • 2023
  • Purpose: This study was undertaken to determine whether the position of cane use affects the distribution of weight-bearing on both feet of children with hemiplegic cerebral palsy in a standing posture. Methods: Twenty participants with cerebral palsy were recruited as volunteers for this study. Using the Zebris FDM-System, weight-bearing distribution according to the method of using a cane was measured under three conditions in randomized order: (1) standing unaided (no cane); (2) standing with the affected side using the cane; and (3) standing with the non-affected side using the cane. The cane was matched by measuring length-from-floor to the greater trochanter of the subject, and was placed 15 cm outward from the little toe on the supporting side. Results: Evaluating the method of using a cane under the three conditions, we determined that pressure of the foot on the affected side was higher in the order: standing with affected side using cane > standing unaided (no cane) > standing with non-affected side using cane (p<0.05). In the post-hoc analysis, a significant difference was observed between (i) standing unaided (no cane) and standing with the affected side using cane, and (ii) standing with affected side using cane and standing with non-affected side using cane (p<0.05). Conclusion: This study suggests that induced weight-bearing methods using a cane on the affected side could increase the weight-bearing capacity on the affected side in children with spastic hemiplegic cerebral palsy, which will have a positive effect on reducing asymmetry weight support.

Behavior of Retaining wall near Rigid slopes (강성사면에 인접한 옹벽의 거동에 관한 연구)

  • Yoo, Nam-Jae;Lee, Myoung-Woog;Park, Byoung-Soo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.405-415
    • /
    • 1998
  • This thesis is an experimental and numerical research on bearing capacity acting retaining walls close to rigid slopes with stiff angles. Experiments were performed with changing the roughness of adjacent slope to the wall, its inclination, distance between wall and slope. Vertical stress and applied surcharge loads were measured by miniature earth cells and a load cel respectively. Stress distribution Vertical Settlement of surcharge load of rigid model footing were measured by LVDTs. Bearing capacities of surcharge loads were compared with theoretical estimations by using several different methods of limit equilibrium and numerical analysis. For limit equilibrium methods, the modified silo and the wedge theories, proposed by Chung sung gyo and Chung in gyo (1994) were used to analyze test results Based on those modified theories, the particular solution with the boundary condition of surcharge loads on the surface of backfill was obtained to find the stress distributions acting in the backfill and to compare with test results. From results of surcharge test with model wall being very close to the slope, analyzed results by the modified silo theory and to be in the better agreements than other methods.

  • PDF

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

Design of Pile Foundations in Soft Deposits (연약지반에서의 말뚝기초의 설계)

  • Kim, Ju-Hyong;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.49-56
    • /
    • 2005
  • The negative skin friction on piles, which are installed in currently consolidating soft deposits, creates significant problems on the stability of pile foundations. This study investigated whether or not the pile foundation designs were appropriate in soft deposits with large amount of consolidation settlement. The final settlements of the grounds along the pile depth were estimated by the soil parameters obtained from the laboratory tests and by the field-measured settlement curves, if they were available. The displacement of the piles along the pile depth was estimated by both the load transfer method and the numerical method. Both methods gave similar locations of neutral points and magnitudes of the maximum axial forces. The movements of the ground and the piles were compared to calculate the down drag acting on piles. For the piles whose bearing capacities were less than the design loads including the down drag, slip layer coatings and/or incrementing of the penetration depth into the bearing stratum were proposed to improve the piles capacities.

  • PDF

Computation of Plug Capacity for Open -Ended Piles Driven into Sands (모래지반에 타입된 개단말뚝의 관내토지지력 산정)

  • 백규호;이승래
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.7-16
    • /
    • 1993
  • Calibration chamber tests were conducted on open -ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on plug capacity, The model pile used in the test series was devised so that the bearing capacity of an open -ended pile could be measured out into three components , outside shaft resistance. plug resistance and tip resistance. Under several assumption, the value of earth pressure coefficient in the soil plug is calculated. It is gradually reduced with increase in the longitudinal distance from the pile tip. At the bottom of soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. In comparison of measured and calculated plug capacities using the one -dimensional analysis, we note that API code and one -dimensional analysis combined with P suggested by Randolph et al. and O'Neill et al. result in great underestimation of the plug capacity. Therefore, based on the test results, an empirical equation was suggested to compute the earth pressured coefficient to be used in the calculation of plug capacity using the one -dimensional analysis. and it produces proper plug capacities for all soil conditions.

  • PDF

Evaluation of Displacement-based Approaches for a Shear Wall Structure (전단벽구조체에 대한 변위기반 내진성능법의 평가)

  • 최상현;현창헌;최강룡;김문수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.465-472
    • /
    • 2003
  • In this paper, the displacement-based seismic design approaches are evaluated utilizing shaking-table test data of a 1:3 scaled reinforced concrete (RC) bearing wall structure Provided by IAEA. The maximum responses of the structure are estimated using the two prominent displacement-based approaches, i.e., the capacity spectrum method and the displacement coefficient method, and compared with the measured responses. For comparison purpose, linear and nonlinear time history analyses and response spectrum analysis are also performed. The results indicate that the capacity spectrum method underestimates the response of the structure In inelastic range while the displacement coefficient method yields reasonable values in general.

  • PDF

Analysis of Ultimate Bearing Capacity of Piles Using Artificial Neural Networks Theory (I) -Theory (인공 신경망 이론을 이용한 말뚝의 극한지지력 해석(I)-이론)

  • 이정학;이인모
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-28
    • /
    • 1994
  • It is well known that human brain has the advantage of handling disperse and parallel distributed data efficiently. On the basic of this fact, artificial neural networks theory was developed and has been applied to various fields of science successfully. In this study, error back propagation algorithm which is one of the teaching technique of artificial neural networks is applied to predict ultimate bearing capacity of pile foundations. For the verification of applicability of this system, a total of 28 data of model pile test results are used. The 9, 14 and 21 test data respectively out of the total 28 data are used for training the networks, and the others are used for the comparison between the predicted and the measured. The results show that the developed system can provide a good matching with model pile test results by training with data more than 14. These limited results show the possibility of utilizing the neural networks for pile capacity prediction problems.

  • PDF

Applicability of over-coring technique to loaded RC columns

  • Campione, Giuseppe;Minafo, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.181-197
    • /
    • 2014
  • Stress determination is a very important step in the assessment of the safety of existing reinforced concrete structures. In rock mechanic this goal is achieved with the over-coring technique. The main idea behind such a technique is to isolate a material sample from the stress field in the surrounding mass and monitor its re-equilibrium deformation response. If the materials remains elastic, and elastic properties are known, stresses may be obtained from the corresponding measured strains. The goal of this paper is to evaluate if the over-coring technique is applicable to reinforced concrete members. The results of an experimental investigation on the behaviour of compressed concrete columns subjected to the over-coring technique are presented. Considerations about the range of applicability of the technique are made by comparing the measured and the theoretical stresses. After that, results of failure tests on drilled specimens are presented and discussed. Furthermore, the response is compared with that of columns core-bored before the compressive test. Finally, comparisons with numerical analysis are shown.

Consolidation Behavior of SCP Improved Ground at Pusan New Port Part 1-1 (부산신항 1-1단계 SCP 개량지반 압밀 특성)

  • JUNG JONG-BUM;YANG SANG-YONG;BYUN JUN-GI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.51-56
    • /
    • 2004
  • The sand compaction pile (SCP) method, which forms a composite ground by driving sand piles into clay deposit, is the most commonly used soil improvement techniques in many countries for more than 30 years. Installation of sand compaction piles reduces the amount of consolidation settlement and increases the bearing capacity of soft clay deposit. In this paper, field survey conducted to investigated the consolidation behavior of the composite ground improved by SCPs. It is suggested that the measured consolidation velocity is later than design theory, however measured consolidation settlement is higher than design theory.

  • PDF

Reduction Effect of Railroad Vibration by Utilizing Waste Tires (폐타이어의 철도진동 저감효과에 대한 실험적 연구)

  • Kim, Jin-Man;Lee, Kwang-Wu;Cho, Sam-Deok;Oh, Se-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • This paper describes the results of a series of field experiments which are carried out to assess the reduction effect of railroad vibration by utilizing waste tires. The ground vibration due to train service is measured in Honam Railroad line and Kyongbu Railroad line to assess the ground vibration with the domestic railroad line and train type before field model test. From the results of these tests, frequency on train service is presented from 5Hz to 100Hz and a range of excellence frequency is presented to be about from 20Hz to 40Hz in the domestic railroad line. Also, plate bearing tests are conducted to evaluate the variation of bearing capacity with different thickness of the waste tire layer and the fill layer. Finally, field model test is performed by using tire chips ($5cm{\times}5cm$ in size) as a reduction material of railroad vibration. The reduction effect of railroad vibration by utilizing waste tires increases with increasing the thickness of the waste tire layer and the frequency of the vibration source. The results of this experimental study was shown that the waste tire can be used for reduction of the railroad vibration.