• Title/Summary/Keyword: Measure of weight

Search Result 1,340, Processing Time 0.023 seconds

A Study on the Development of Raingauge with 0.01 mm Resolution (0.01 mm 급 우량계 개발에 관한 연구)

  • Lee, Bu Yong
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.637-643
    • /
    • 2004
  • A new method of automatic recording raingauge is developed to measure rainfall with 0.01mm resolution. This use two different signals to measure rainfall more accurately compare than other raingauges. One is weight of the tipping bucket with rainfall amount and the other is pulse from tipping bucket reverse. New method applied 1 mm tipping bucket mechanism and install loadcell under tipping bucket mechanism for measuring rainfall weight. Loadcell measure weight of rainfall until 1 mm with 0.01 mm resolution and more than 1 mm than bucket reverse and pulse signal generate, after that loadcell measure weight again. The validation of new instrument was examined in the room 65 mm/hour rainfall rate total 53 mm range. There is below than 1 % error of absolute rainfall amount and 0.01 mm resolution. The field test of instrument was carried out by comparing its measured values with values recorded by weight type and standard type on June 1 2003 at Terrestrial Environmental Research Center at Tsukuba University in Tsukuba of Japan, when it has recorded total amount of 40.58 mm rainfall by standard raingauge and new raingauge recorded 41.032 mm. Same rainfall intensity pattern observed in field observation with weight type raingauge. Rainfall intensity between weight type and Lee-A type raingauge reached 0.9947 correlation in 3 minute average.

An Image Processing System for Measuring the Weight of A Dairy Cattle (젖소 체중측정을 위한 영상처리 시스템)

  • 이대원;김현태
    • Journal of Animal Environmental Science
    • /
    • v.7 no.3
    • /
    • pp.183-190
    • /
    • 2001
  • The objective of this research was to design and construct an image processing system to measure easily and accurately cow's weight. The image processing system was built for a dairy cattle to be measured and estimated it's weight using camera and personal computer. The pixel numbers, which was derived from the image processing system, were counted to estimate the weight of a dairy cattle. They were utilized various was for finding the relationships between pixel numbers and it's real weight. Based on the results of this research the following conclusions were made: 1. It's weight could be estimated by using pixel numbers, which was captured from top and side cameras to measure it. The correlations with tea-view pixel numbers, side-view pixel numbers, superficial area pixel numbers and the volume pixel numbers were 0.909, 0.939, 0.944 and 0.965. 2. 50 cattle was used to execute an experiment with the image processing system, but average errors were big to make out the good relationship between cow's weight and pixel numbers. In order measure accurately a cattle weight, cattle weight, cattle groups would be divided by the age of cattle and further study should be carried out to be based on the results of this research. 3. The average time it took to perform the image processing to be measure it was 10 seconds, but it took 10 minutes for cattle to enter for measuring it's weight into the weighting system.

  • PDF

Optimally Weighted Cepstral Distance Measure for Speech Recognition (음성 인식을 위한 최적 가중 켑스트랄 거리 측정 방법)

  • 김원구
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.133-137
    • /
    • 1994
  • In this paper, a method for designing an optimal weight function for the weighted cepstral distance measure is proposed. A conventional weight function or cepstral lifter is obtained eperimentally depending on the spectral components to be emphasized. The proposed method minimizes the error between word reference patterns and the traning data. To compare the proposed optimal weight function with conventional function, speech recognition systems based on Dpynamic Time Warping and Hidden Markov Models were constructed to conduct speaker independent isolated word necogination eperiment. Results show that the proposed method gives better performance than conventional weight functions.

  • PDF

An Automatic Weight Measurement of Rope Using Computer Vision

  • Joo, Ki-See
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.141-146
    • /
    • 1998
  • Recently, the computer vision such as part measurement, and product inspection is very popular to achieve the factory automation since the labor cost is dramatically increasing. In this paper, the diameter and the length of rope are measured by CCD camera which is orthogonally mounted on the ceiling. Two parameters which are the diameter and the length of rope are used to measure the weight of rope. If the weight of rope is reached to predetermined weight, the information is transmitted to PLC(programmable logic control) to cut the rope on the wheel. The cutting machine cuts the rope according to the information obtained from the CCD camera. To measure the diameter and length of rope on real time, the searching space for image segmentation is restricted the predetermined area according to the camera calibration position. Finally, to estimate the weight of rope, the knowledge base system which depends on the diameter, the length of rope, and weight relation between these information are constructed according to diameters of rope. This method contributes to achieve the factory automation, and reduce the production cost since the operators are unnecessary to measure the weight of rope by try-and-error method.

  • PDF

Development of a Weight in Motion sensor using Piezo Film (피에조 필름을 이용한 축중감지기 개발)

  • Yang, Hui-Sun;Park, Yon-Kyu;Kang, Dae-Im;Kim, Am-Kee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.262-267
    • /
    • 2000
  • This paper describes a weight in motion(WIM) sensor to measure the weight of a vehicle in motion. The main sensing element of the WIM sensor is the PVDF(Polyvinylidene fluoride) film that shows rapid response to an external excitation. Due to the property of rapid response, it is possible to measure the weight of a vehicle in motion with high speed. In the development of the WIM sensor, the dominant target value was the uniformity of the sensor. To increase the uniformity, We employed shrinkable tube made of rubber to enhance the uniformity, and performed the rolling of the brass tube repeatedly. The uniformity of the sensor was examined experimentally. It was comparable to that of a WIM sensor of the MSI which was the benchmark of this development. This paper also describes the mechanical modeling of the sensor and the suitable charge amplifier for the sensor.

  • PDF

Relation between Weight Bearing Ratio in the Standing Posture Immediately after Performing Standing Task and Balance and Functional Ambulation in Stroke Patients

  • Hwang, Da-Gyeom;Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.5
    • /
    • pp.320-324
    • /
    • 2015
  • Purpose: The purpose of this study was to provide methods for assessment of functional balance through study of correlation with the weight bearing ratio, functional balance, and functional gait on patients with stroke. Methods: Thirty-nine patients with stroke participated in this study. The timed up and go test was used to measure balance and the functional ambulation category test to measure functional gait. Weight bearing was measured in the quiet standing posture and weight bearing in the quiet standing posture immediately after performing the standing-task. Results: Both timed up and go test and functional ambulation category test showed significant correlation with balance in the quiet standing posture immediately after performing the standing task. Conclusion: Measurement of balance in the quiet standing posture immediately after performing the standing-task was considered a meaningful scale for measurement of both balance function and gait function of patients with stroke.

The Correlation of Foot Pressure with Spinal Alignment in Static Standing (정적 기립 자세에서 족저압 분포와 척추 정렬과의 상관관계 연구)

  • Lim, Jae-Heon;Ko, Hyo-Eun
    • PNF and Movement
    • /
    • v.12 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • Purpose: To determine the normative data for the correlation of spinal, pelvic parameters with foot pressure in the young subjects. Methods: The subjects of this study were 39 patients in healthy adults. The Formetric-III was used to measure of spinal alignment. The pedoscan was used to measure of foot pressure. The correlation of trunk imbalance, trunk inclination, lateral deviation with foot pressure. The foot pressure measurement was consisted of maximal/mean pressure, weight contribution. Result: There was a negative correlation of trunk inclination with Max_R. There was a negative correlation of trunk inclination with Max_R. There was a positive correlation of trunk imbalance with Max_L. There was a positive correlation of lumbar lordosis with Mean_R_front, Lt. posterior weight distribution. There was a negative correlation of lumbar lordosis with Lt., Rt. in distribution There was a negative correlation of pelvic tilt with Mean_R_front, Lt. posterior weight distribution. There was a positive correlation of pelvic tilting with Rt. weight distribution, Lt. posterior weight distribution. There was a negative correlation of pelvic torsion with Lt. weight distribution, Rt. posterior weight distribution. There was a negative correlation of pelvic rotation with Lt. weight distribution, Lt. posterior weight distribution. Conclusion: The data obtained from the study may be used for future studies related to correlation of the spinal, pelvic deviation with foot pressure.

Development of 3-axis finger force sensor for an intelligent robot's hand (로봇의 지능형 손을 위한 3축 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.411-416
    • /
    • 2006
  • This paper describes the development of a 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand. In order to safely grasp an unknown object, robot's hand should measure the weight of an object and the force of grasping direction simultaneous. But, in the published papers, the grippers and hands equippd with the force sensor that could only measure the force of grasping direction, and grasped objects using their sensors. These grippers and hands can't safely grasp unknown objects, because they can't measure the weight of it. Thus, it is necessary to develop 3-axis force sensor that can measure the weight of an object and the force of grasping direction for an intelligent gripper. In this paper, 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand was developed. In order to fabricate a 3-axis finger force sensor, the sensing elements were modeled using parallel plate beams, and the theoretical analysis was performed to determine the size of sensing elements, then the 3-axis finger force sensor was fabricated. Also, the characteristic test of the developed 3-axis finger force sensor was performed.

Implementation of a Body Weight Distribution Measurement System Applicable to Static Bicycle Fitting (정적 자전거 피팅에 적용 가능한 체중 분포 측정장치의 구현)

  • Yoon, Seon-ho;Kwon, Jun-hyuk;Kim, Cheong-worl
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.242-248
    • /
    • 2018
  • Bicycle fittings have been used to ride bicycles comfortably while minimizing non-traumatic injuries. To analyze the cause of non-traumatic injuries, it is necessary to measure the body weight distribution in various biking positions. In this study, a weight distribution measurement system was implemented by installing five weighable devices on the saddle, both pedals, and both handle grips of a bicycle. To measure the body weight applied through the saddle, the structure of a commercial seat post was modified and a load cell was installed inside. Weighable pedals and handle grips were designed using a 3D modeling program and fabricated by employing a 3D printer. The body weight distribution for ten bicycle riders was measured when the two pedals were aligned horizontally and vertically. Experimental results showed that the body weight distribution varied significantly depending on human body shape, even after the bicycle fitting was completed. The difference between the body weight measured by the proposed system and a commercial scale was less than 3 %.

Empirical Comparisons of Disparity Measures for Three Dimensional Log-Linear Models

  • Park, Y.S.;Hong, C.S.;Jeong, D.B.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.543-557
    • /
    • 2006
  • This paper is concerned with the applicability of the chi-square approximation to the six disparity statistics: the Pearson chi-square, the generalized likelihood ratio, the power divergence, the blended weight chi-square, the blended weight Hellinger distance, and the negative exponential disparity statistic. Three dimensional contingency tables of small and moderate sample sizes are generated to be fitted to all possible hierarchical log-linear models: the completely independent model, the conditionally independent model, the partial association models, and the model with one variable independent of the other two. For models with direct solutions of expected cell counts, point estimates and confidence intervals of the 90 and 95 percentage points of six statistics are explored. For model without direct solutions, the empirical significant levels and the empirical powers of six statistics to test the significance of the three factor interaction are computed and compared.

  • PDF