• 제목/요약/키워드: Meanline Aerodynamic Design

검색결과 13건 처리시간 0.018초

40kW급 터보제너레이터용 원심압축기의 공력설계 및 유동해석 (Aerodynamic Design and Analysis of a Centrifugal Compressor in a 40kW Class Turbogenerator Gas Turbine)

  • 오종식;윤의수;조수용;오군섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 강연회 및 연구개발 발표회 논문집
    • /
    • pp.128-135
    • /
    • 1998
  • Procedures and results of aerodynamic design of a centrifugal compressor are presented for development of a 40kW class turbogenerator gas turbine. Specification of higher level of total pressure ratio of 4 and total efficiency of $80\%$ requires advanced methods of design and analysis. In the meanline design/analysis, a method with conventional loss modeling and a method with the two-zone model are alternately used for more reliable prediction. In the impeller blade generation, a series of Bezier curve are combined to produce meridional contours and distributions of blade camber angle and blade thickness. Intermediate profiles of blades are repeatedly produced and changed to be finally fixed through quasi-three dimensional Euler flow analysis. Three dimensional compressible turbulent flow analysis is then performed for the impeller to be confirmed in the final step of design. Satisfactory results in the aerodynamic performance are obtained, which assures that there is no need of aerodynamic re-design.

  • PDF

원심/사류압축기의 공력설계 프로그램 개발 - 제1부 : 평균유선 설계/성능해석 - (Aerodynamic Design Program for Centrifugal/Mixed-flow Compressors - Part I : Meanline Design and Performance Prediction -)

  • 오종식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.457-463
    • /
    • 2003
  • A general program of meanline design and/or performance prediction for centrifugal/mixed-flow compressors is successfully commercialized using various empirical loss models. 4 types of diffusers, 3 types of exit elements, shrouded/unshrouded impellers and real gas option are included in the program capabilities. Total 16 cases of benchmark test results proved its reliability to be effectively utilized in the development processes.

  • PDF

250kW급 MCFC 연료전지 시스템용 공기공급장치 개발 (Development of an Air Supply System in 250 kW MCFC Fuel Cell System)

  • 박준영;황순찬;박무룡;김영철;안국영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.280-283
    • /
    • 2008
  • This study is concerned with development of air supply system in 250kW MCFC fuel cell system. The turbo blower is decided as an air supply system to increase the efficiency of fuel cell system. The turbo blower consists of an impeller, two vaneless diffuser, a vaned diffuser and a volute. The cascade diffuser is used to raise the efficiency of turbo blower. An aerodynamic design was done by applying the repeating design procedure including a meanline design, a 3D geometry generation and fluid dynamic calculation. It is confirmed from meanline and 3D flow analysis results that the operating range is enough and design requirements are successfully achieved. The performance test results were also included in this paper.

  • PDF

중형 엔진 터보차져의 원심압축기에 관한 공력학적 3차원 형상 및 구동용 연소기 설계 (Aerodynamic Three Dimensional Geometry and Combustor Design for the Compressor of the Medium Speed Diesel Engine Turbocharger)

  • 류승협;갈상학;하지수;김승국;김홍원
    • 한국유체기계학회 논문집
    • /
    • 제9권2호
    • /
    • pp.30-38
    • /
    • 2006
  • An aerodynamic design for centrifugal compressor which was applied to medium speed diesel engine has been done. First of all, exact compressor specifications must be defined by accurate engine system matching. This matching program has been developed. Using the meanline prediction method, geometric design and performance curves for compressor were established and verified by comparing three dimensional viscous CFD results. The deviation at the design point was about 2.3%. Combustor has been designed and manufactured for the performance test of medium speed diesel engine turbocharger. Fuel nozzle of combustor was designed and its characteristics was analyzed by PIV and PDPA test equipment. Through these results, spray characteristics were studied and flow coefficient equation was deduced.

회전 환경에서의 축류 터빈 성능평가 (Axial Turbine Performance Evaluation in a Rotating Facility)

  • 윤용상;송성진;김홍원;조성희
    • 한국유체기계학회 논문집
    • /
    • 제4권3호
    • /
    • pp.46-52
    • /
    • 2001
  • This paper describes a turbine test program conducted at Seoul National University(SNU). To measure blades' aerodynamic performance, either linear(2-Dimensional) or annular(3-Dimensional) cascades are often used. However, neither cascade can consider effects such as those due to rotation or rotor-stator interaction. Therefore, a rotating test facility for axial turbines has been designed and built at SNU, and its description is given in this paper. The results from an axial turbine performance test are presented. At the design point, the measured efficiency agrees with the efficiency predicted by a meanline analysis. At off design points, however, the measured and predicted efficiencies diverge. The most likely cause is hypothesized to be the inaccuracy of correlations used in the meanline analysis at off design points.

  • PDF

공력음향학적 특성을 고려한 시로코 팬의 설계 방법 (Design Method of the Sirocco Fan Considering Aeroacoustic Performance Characteristics)

  • 이찬
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.59-64
    • /
    • 2010
  • A design method of Sirocco fan is developed for constructing 3-D impeller and scroll geometries, and for predicting both the aerodynamic performance and the noise characteristics of the designed fan. The aerodynamic blading design of fan is conducted by blade angle, camber line determinations and airfoil thickness distribution, and then the scroll geometry of fan is designed by using logarithmic spiral. The aerodynamic performance of designed fan is predicted by the meanline analysis with flow blockage, slip and pressure loss correlations. Based on the predicted performance data, fan noise is predicted by two models for cutoff frequency and broadband noise sources. The present predictions for the performance and the noise level of actual fans are well agreed with measurement results.

중형 엔진 터보차져의 원심압축기에 관한 공력학적 3차원 형상 및 구동용 연소기 설계 (Aerodynamic Three Dimensional Geometry and Combustor Design for the Compressor of the Medium Speed Diesel Engine Turbocharger)

  • 김홍원;류승협;갈상학;하지수;김승국
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.517-524
    • /
    • 2005
  • An aerodynamic design for centrifugal compressor which was applied to medium speed diesel engine has done. First of all, exact compressor specifications must be defined by accurate engine system matching. This matching program has been developed. Using the mean1ine prediction method, geometric design and performance curve for compressor was done and verified by comparing three dimensional viscous CFD results. The deviation at the design point was about 2.3%. Combustor has been designed and manufactured for the performance test of medium speed diesel engine turbocharger. Fuel nozzle of combustor was designed and performed by PIV and PDPA test equipment. Through these results, spray characteristics were studied and flow coefficient equation was deduced.

  • PDF

축류 터빈의 설계 변수 및 설계 변수의 제한조건이 성능에 미치는 영향 (Effects of the design variables and their constraints on the stage performance of an axial flow turbine)

  • 박호동;정명균
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2109-2124
    • /
    • 1991
  • 본 연구에서는 축류 터빈의 최적 설계 계산에서 사용 용도에 따라 달리 적용 될 수 있는 특정 제한조건, 즉 유량 계수, 압력비, 출력 그리고 하중 계수를 각각 고 려하였을 경우에 최대 효율을 가지기 위한 최적 조건을 계산하고자 한다. 또한 단일 설계 변수의 민감도(sensitivity) 뿐만 아니라, 단일 민감도에서 성능에 큰 영향을 주 는 설계 변수들에 대하여 복수 민감도를 나타내어 설계 변수 및 설계 제한 조건이 축 류 터빈의 성능에 미치는 영향을 조사하고자 한다.

박판형 고효율 터보홴의 공력학적 설계 (Aerodynamic Design of Slim and High-efficient Turbo-Fan)

  • 이명재;김남욱;박덕준;조인수;이승배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2600-2605
    • /
    • 2008
  • Turbo-fans for a FFU unit should be aerodynamically designed to provide the FFU system with the given flow-rate at the lowest rotational-speed by considering the interaction effect with the FFU casing. In this study, slim and highly efficient turbo-fans are designed to satisfy the given performance at the specific speed by using the hybrid-stacking method of an inducer and a 2D-bladed turbo fan. The mean-line analysis, cascade theory, and CFD technique are all together applied to control the passage areas on the meridional plane from the inlet to the exit of the blade. Furthermore, the torque control algorithm is adopted to improve the performances within the constraints by the motor rpm-torque characteristics, and the resulting measured performances of mock-up fans are discussed.

  • PDF

축류형 3차원 터빈익형의 성능시험장치 개발 (Development of a Test Rig for Three-Dimensional Axial-Type Turbine Blade)

  • 장범익;김동식;조수용;김수용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.453-460
    • /
    • 2000
  • A test rig is developed for performance test of 1 stage axial-type turbine which is designed by meanline analysis, streamline curvature method, and blade design method using configuration parameters. The purpose of this study is to find the best configuration parameters for designing a high efficiency axial-type turbine blade. To measure the efficiency of turbine stage, a dynamo-meter is installed. Two different stators which are manufactured as an integrated type are developed, and a rotor blade and 5 sets disc are developed for setting different stagger angle. The tip and hub diameters of the test turbine are 300 and 206.4mm, respectively. The rotating speed is 1800RPM, and the extracted power is 2.5kW. Flow coefficient is 1.68 and the reaction factor at meanline is 0.373. The number of stator and rotor of test turbine are 31 and 41, respectively. The Mach number of stator exit flow near hub is 0.164.

  • PDF