• 제목/요약/키워드: Mean-Shift Segmentation

검색결과 46건 처리시간 0.028초

Mean Shift Segmentation을 이용한 수채화 스타일 변환 기법 (Retouching Method for Watercolor Painting Style Using Mean Shift Segmentation)

  • 이상걸;김철기;차의영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2010년도 제42차 하계학술발표논문집 18권2호
    • /
    • pp.433-434
    • /
    • 2010
  • 본 논문에서는 영상처리에서 많이 사용하는 bilateral filtering과 mean shift segmentation을 이용하여 일반적인 사진을 수채화 스타일로 변환하는 기법에 대하여 제안한다. 먼저 bilateral filtering을 이용하여 사진의 외곽선 부분은 보존하면서 고주파 성분을 약화시키도록 한다. 그리고 bilateral filtering된 영상에서 mean shift segmentation을 수행하여 수채화 스타일의 영상을 생성한다. 본 논문에서 제안하는 기법으로 다양한 사진에 대하여 실험한 결과 수채화 스타일로 잘 변화되는 것을 확인하였으며 특히 주광에서 촬영한 풍경 사진들에 대하여 보다 우수한 성능을 보임을 확인하였다.

  • PDF

Mean Shift 분석을 이용한 그래프 컷 기반의 자동 칼라 영상 분할 (Graph Cut-based Automatic Color Image Segmentation using Mean Shift Analysis)

  • 박안진;김정환;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.936-946
    • /
    • 2009
  • 그래프 컷(graph cuts) 방법은 주어진 사전정보와 각 픽셀간의 유사도를 나타내는 데이터 항(data term)과 이웃하는 픽셀간의 유사도를 나타내는 스무드 항(smoothness term)으로 구성된 에너지 함수를 전역적으로 최소화하는 방법으로, 최근 영상 분할에 많이 이용되고 있다. 기존 그래프 컷 기반의 영상 분할 방법에서 데이터 항을 설정하기 위해 GMM(Gaussian mixture model)을 주로 이용하였으며, 평균과 공분산을 각 클래스를 위한 사전정보로 이용하였다. 이 때문에 클래스의 모양이 초구(hyper-sphere) 또는 초타원(hyper-ellipsoid)일 때만 좋은 성능을 보이는 단점이 있다. 다양한 클래스의 모양에서 좋은 성능을 보이기 위해, 본 논문에서는 mean shift 분석 방법을 이용한 그래프 컷 기반의 자동 영상분할 방법을 제안한다. 데이터 항을 설정하기 위해 $L^*u^*{\upsilon}^*$ 색상공간에서 임의로 선택된 초기 mean으로부터 밀도가 높은 지역인 모드(mode)로 이동하는 mean의 집합들을 사전정보로 이용한다. Mean shift 분석 방법은 군집화에서 좋은 성능을 보이지만, 오랜 수행시간이 소요되는 단점이 있다. 이를 해결하기 위해 특징공간을 3차원 격자로 변형하였으며, mean의 이동은 격자에서 모든 픽셀이 아닌 3차원 윈도우내의 1차원 모멘트(moment)를 이용한다. 실험에서 GMM을 이용한 그래프 컷 기반의 영상분할 방법과 최근 많이 이용되고 있는 mean shift와 normalized cut기반의 영상분할 방법을 제안된 방법과 비교하였으며, Berkeley dataset을 기반으로 앞의 세 가지 방법보다 좋은 성능을 보였다.

컬러 영상 처리를 위한 Mean Shift 기법 개선 (Modified Mean Shift for Color Image Processing)

  • 황영철;배정호;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.407-410
    • /
    • 2009
  • 본 논문에서는 개선된 mean shift를 이용한 컬러 영상 분할을 소개한다. Mean shift는 Yizong Cheng에 의해 재조명되고 Dorin Comaniciu 등에 의해 정리되어 영상 필터링(image filtering), 영상 분할(image segmentation), 물체 추적(object tracking) 등 여러 응용 분야에 널리 활용되고 있다. 커널을 이용해 밀도를 추정하고 밀도가 가장 높은 점으로 커널을 연속적으로 이동함으로써 지역적으로 주요한 위치로 데이터 값을 갱신시킨다. 그러나 영상에 포함된 모든 화소에 대해 mean shift를 수행해야하기 때문에 연산 시간이 많이 소요되는 단점이 있다. 본 논문에서는 mean shift 필터링 과정을 분석하고 참조수렴방법과 강제수렴방법을 이용해 소요 시간을 단축시켰다. 모든 점에 대해 mean shift를 수행하는 대신 특정 조건을 만족하는 픽셀은 이웃 픽셀의 수렴 값을 참조하고, mean shift 과정에 진동 또는 미미한 이동을 계속하는 픽셀은 강제 수렴을 실시하였다. 개선된 방법과 기존의 mean shift 방식을 적용하여 영상 필터링과 영상 분할에 적용한 실험에서 결과 영상에는 차이가 적고 기존의 방법에 비해 수행 시간이 24% 정도 소요됨을 확인하였다.

  • PDF

Mean Shift Segmentation을 이용한 스마트폰 기반의 수채화 효과 변환 기법 (Smartphone Based Retouching Method for Watercolor Painting Effect Using Mean Shift Segmentation)

  • 이상걸;김철기;차의영
    • 한국정보통신학회논문지
    • /
    • 제14권11호
    • /
    • pp.2413-2418
    • /
    • 2010
  • 본 논문에서는 최근 급속히 보급되고 있는 스마트폰에서 촬영한 사진 영상을 수채화 효과가 나도록 변환하는 기법에 대하여 제안한다. 제안하는 수채화 효과 변환 기법은 영상처리 분야에서 많이 사용하는 양방향 필터링(bilateral filtering)과 평균 이동 분할(mean shift segmentation)을 이용한다. 먼저 입력 영상을 스마트폰 화면 해상도로 크기 변환한 후 양방향 필터링을 이용하여 사진의 외곽선 부분은 보존하면서 고주파 성분을 약화시키도록 한다. 다음으로 양방향 필터링을 거친 영상에서 평균 이동분할을 수행하여 최종영상을 생성한다. 실험을 통하여 스마트폰의 연산속도를 고려한 평균 이동 분할의 파라미터 값을 설정하여 다양한 사진에 대하여 수채화 효과가 잘 나타나는 것을 확인하였다.

평균이동 분할을 이용한 임펄스 잡음제거 (Cleaning Method of Impulse Noise Using Mean Shift Segmentation)

  • 권영만;임명재
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권6호
    • /
    • pp.163-168
    • /
    • 2009
  • 본 논문에서는 평균이동 분할을 이용해서 임펄스 잡음을 제거하는 효과적인 방법을 제안한다. 이 방법은 영상에 모든 화소에 대해서 필터링 작업을 하는 기존의 방법과는 달리 평균이동 분할을 사용해서 임펄스 잡음의 위치를 추정하고 그 위치에서만 필터링 작업을 수행하는 방식이다. 실험을 통해 결과 영상의 오차의 제곱의 합을 측정하여 화질이 개선되고, 임펄스 잡음이 효과적으로 제거되는 것을 확인하였다.

  • PDF

Mean Shift Segmentation을 이용한 스마트폰 기반의 수채화 효과 변환 기법 (Smartphone Based Retouching Method for Watercolor Painting Effect Using Mean Shift Segmentation)

  • 이상걸;김철기;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.206-208
    • /
    • 2010
  • 본 논문에서는 최근 급속히 보급되고 있는 스마트폰에서 촬영한 사진 영상을 수채화 효과가 나도록 변환하는 기법에 대하여 제안한다. 제안하는 수채화 효과 변환 기법은 영상처리 분야에서 많이 사용하는 양방향 필터링(bilateral filtering)과 평균 이동 분할(mean shift segmentation)을 이용한다. 먼저 입력 영상을 스마트폰 화면 해상도로 크기 변환한 후 양방향 필터링을 이용하여 사진의 외곽선 부분은 보존하면서 고주파 성분을 약화시키도록 한다. 다음으로 양방향 필터링을 거친 영상에서 평균 이동 분할을 수행하여 최종 영상을 생성한다. 실험을 통하여 스마트폰의 연산 속도를 고려한 평균 이동 분할의 파라미터 값을 설정하여 다양한 사진에 대하여 수채화 효과가 잘 나타나는 것을 확인하였다.

  • PDF

Mean Shift Segmentation을 이용한 수채화 효과 생성 기법 (Retouching Method for Watercolor Painting Effect Using Mean Shift Segmentation)

  • 이상걸;김철기;차의영
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권9호
    • /
    • pp.25-33
    • /
    • 2010
  • 본 논문에서는 영상처리에서 많이 사용하는 양방향 필터링(bilateral filtering)과 평균 이동 분할(mean shift segmentation)을 이용하여 일반적인 사진을 수채화 효과가 나도록 하는 리터칭 기법에 대하여 제안한다. 먼저 양방향 필터링을 이용하여 사진의 외곽선 부분은 보존하면서 고주파 성분을 약화시키도록 한다. 그리고 양방향 필터링된 영상에서 각각 DoG(Difference of Gradient) 에지 추출과 평균 이동 분할을 수행한다. 이때 DoG 에지 추출은 원영상의 RGB 색상 공간을 CIELAB 공간으로 변환 후 휘도(luminance) 성분만 이용하여 추출하도록 하며 두 결과를 결합하여 최종 영상을 생성한다. 본 논문에서 제안하는 기법으로 다양한 사진에 대하여 실험한 결과 수채화 효과가 잘 나타나는 것을 확인하였으며 특히 주광에서 촬영한 풍경 사진들에 대하여 보다 우수한 성능을 보임을 확인하였다.

경량화된 Mean-Shift 영상 분할 및 형태 특징을 이용한 객체 탐지 방법 (Target Detection Method using Lightweight Mean Shift Segmentation and Shape Features)

  • 김정석;김대연
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.41-44
    • /
    • 2022
  • Mean-Shift 영상 분할은 객체 검출을 위한 영상 전처리 방법으로써, 영상 처리 및 패턴 인식 분야에서 널리 사용되는 방법이다. 영상 분할은 영역 기반과 에지 기반 방식으로 나누어지며 대표적으로 FCM, Quickshift, Felzenszwalb, SLIC 알고리즘 등 이 있다. 언급한 영상 분할 방법들은 Mean-Shift 영상 분할에 비해서 빠른 속도로 실행시킬 수 있지만, 형태적 특징이 훼손되고 하나의 객체가 여러 세그멘테이션으로 분할된다는 단점을 가지고 있다. 본 논문에서는 소형 객체를 탐지하기 위한 고속화된 Mean-Shift 영상 분할과 객체의 형태적 특징을 이용하여 객체를 탐지하는 방법을 제안한다. 하드웨어 리소스가 제한된 신호처리기에 제안하는 알고리즘을 수행하기 위하여 Mean-Shift 영상 분할에서 필터링 과정을 고속화 하였고, 적외선 영상 내 영상 전처리 수행을 통해 잡음 제거 후 Mean-Shift 영상 분할 방법을 수행함으로써, 객체의 형태적 특징을 잘 살려서 영상 분할을 할 수 있도록 하였다. 또한 각 세그멘테이션의 크기, 너비, 높이, 밝기 정보와 형태적 특징점을 이용한 객체 탐지 방법을 제안한다.

  • PDF

중요도 맵과 단계적 영역병합을 이용한 백혈구 분할 (Leukocyte Segmentation using Saliency Map and Stepwise Region-merging)

  • 김자원;고병철;남재열
    • 정보처리학회논문지B
    • /
    • 제17B권3호
    • /
    • pp.239-248
    • /
    • 2010
  • 혈액 세포 영상에서 백혈구는 환자의 건강상태를 파악하는데 중요한 정보를 제공하며, 이를 통해 다양한 질병을 조기에 예측할 수 있다. 따라서 질병의 조기 예측을 위해 혈액세포에서 백혈구의 분리는 매우 중요한 단계이다. 본 논문에서는 중요도 맵과 단계적 영역 병합을 이용하여 혈액 세포 영상에서 백혈구를 자동으로 분할하는 기법을 제안한다. 백혈구 세포 영역은 염색물질에 의해 주변에 비해 두드러진 색상, 질감 정보를 가짐으로 이를 기반으로 중요도 맵(Saliency Map)을 만든다. 이를 통해 세포 영상에서 두드러진 영역을 찾아 sub-image를 분리하고, 각 sub-image에서 mean-shift 알고리즘을 적용하여 영역 클러스터링을 수행한다. Mean-shift 적용 후 얻은 클러스터들에 대해 단계적 영역 병합 알고리즘을 적용하고, 최종적으로 백혈구 핵으로 판단되는 단일 클러스터를 얻을 수 있다. 본 논문에서 제안한 방법은 혈액 세포 영상을 사용하여 테스트한 결과 71%의 핵 검출 정확도를 보였으며, 기존의 다른 알고리즘보다 뛰어난 성능을 나타내었다.

Mean Shift 알고리즘과 영역 병합 방법을 이용한 경계선 보존 컬러 영상 분할 (An Edge Preserving Color Image Segmentation Using Mean Shift Algorithm and Region Merging Method)

  • 곽내정;권동진;김영길
    • 한국콘텐츠학회논문지
    • /
    • 제6권9호
    • /
    • pp.19-27
    • /
    • 2006
  • Mean shift 방법은 중심 모드를 찾기 위한 비모수적 통계 방법으로 컬러 영상을 분할하는데 효율적이다. 그러나 입력되는 윈도우 크기에 따라 분할된 결과가 달라지며 윈도우의 크기 값이 작을 경우 많은 영역으로 분할되는 단점이 있다. 본 논문은 이러한 단점을 개선하여 mean shift 알고리즘에 의한 분할 영상이 과도하게 분할되었을 경우 영역 병합 방법을 이용하여 유사 영역을 병합하는 방법을 제안한다. 제안 방법은 과분할된 영상을 HSI 컬러 공간으로 변환하여 색상 정보를 이용하여 유사 영역으로 병합하며 이때 경계 영역을 보존하기 위해 영역 병합 제한자를 이용하여 병합 유무를 결정한다. 그 후 RGB 컬러 공간을 이용하여 HSI 컬러 공간에서 병합되지 않은 영역들을 병합하였다. 실험 결과는 다양한 영상에 대해 주요 영역들의 분할 결과에서 우수한 성능을 보여준다.

  • PDF