• Title/Summary/Keyword: Mean wind speed

Search Result 435, Processing Time 0.026 seconds

A Short-Term Wind Speed Forecasting Through Support Vector Regression Regularized by Particle Swarm Optimization

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.247-253
    • /
    • 2011
  • A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.

Basic characteristics of wind-blown kiwifruit vines (키위나무의 바람에 대한 특성연구)

  • Kang, Jong-Hoon;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.101-104
    • /
    • 2007
  • Kiwifruit vines with broad leaves are easily torn or shed by high-speed wind. In this study, the threshold wind speed at which a cane is broken was investigated experimentally with varying physical parameters of a kiwifruit vine under two different ABL (atmospheric boundary layer) conditions. In addition, the temporal variation of wind-blown young canes was visualized using a high-speed camera. The average threshold wind speeds for ABL types A and B are about 20.5 m/s and 18.9 m/s, respectively. A wind-blown young cane takes periodic up-and-down motion when it is broken off. The mean motion frequency of young canes of the kiwifruit vines was found to be about 4.5Hz.

  • PDF

Variation of Capacity Factors by Weibull Shape Parameters (와이블 형상계수에 따른 이용률 변화)

  • Kwon, Il-Han;Kim, Jin-Han;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • Effects of Weibull shape parameter, k, on capacity factors of wind turbines were investigated. Wind distributions with mean wind speeds of 5 m/s, 6 m/s, 7 m/s and 8 m/s were simulated and used to estimate the annual energy productions and capacity factors of a 2MW wind turbine for various Weibull shape parameters. It was found from the study that the capacity factors of wind turbines are much affected by Weibull shape parameters. When the annual mean wind speed at the hub height of a wind turbine was about 7 m/s, and the air density was assumed to be 1.225 $kg/m^3$, the maximum capacity factor of a 2 MW wind turbine having a rated wind speed of 13 m/s was found to occur with the shape parameter of 2. It was also found that as the mean wind speed increased, the Weibull k parameter which yielded the maximum capacity factor increased. The simulated results were also validated by predictions of capacity factors of wind turbines using wind data measured in complex terrain.

Development of wind Map Over North Korea using the Mesoscale Model WRF (중규모 수치모델 WRF를 이용한 북한 풍력-기상자원지도 개발)

  • Seo, Beom-Keun;Byon, Jae-Young;Choi, Young-Jean
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.471-480
    • /
    • 2011
  • This study investigates the characteristics of surface wind in North Korea using mesoscale model WRF. Hourly wind fields were simulated for one year representing mean characteristics of an 11-years period from 1998 to 2008. The simulations were performed on a nested grid from 27 km to 1 km horizontal resolution. The simulated wind map at 10 m above ground level is verified with 27 surface observations. Statistical verification skill score indicates that wind speed tends to overestimate in surface layer. The average RMSE value of the simulated wind speed is around $2.8ms^{-1}$. Wind map in North Korea showed that strong wind speed is distributed in the mountainous and western coastal region. The results of this wind mapping study contribute for the founding of wind energy potential location.

Non-stationary statistical modeling of extreme wind speed series with exposure correction

  • Huang, Mingfeng;Li, Qiang;Xu, Haiwei;Lou, Wenjuan;Lin, Ning
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.129-146
    • /
    • 2018
  • Extreme wind speed analysis has been carried out conventionally by assuming the extreme series data is stationary. However, time-varying trends of the extreme wind speed series could be detected at many surface meteorological stations in China. Two main reasons, exposure change and climate change, were provided to explain the temporal trends of daily maximum wind speed and annual maximum wind speed series data, recorded at Hangzhou (China) meteorological station. After making a correction on wind speed series for time varying exposure, it is necessary to perform non-stationary statistical modeling on the corrected extreme wind speed data series in addition to the classical extreme value analysis. The generalized extreme value (GEV) distribution with time-dependent location and scale parameters was selected as a non-stationary model to describe the corrected extreme wind speed series. The obtained non-stationary extreme value models were then used to estimate the non-stationary extreme wind speed quantiles with various mean recurrence intervals (MRIs) considering changing climate, and compared to the corresponding stationary ones with various MRIs for the Hangzhou area in China. The results indicate that the non-stationary property or dependence of extreme wind speed data should be carefully evaluated and reflected in the determination of design wind speeds.

Comparative Analysis of Wind Power Energy Potential at Two Coastal Locations in Bangladesh

  • Islam, Asif;Rahman, Mohammad Mahmudur;Islam, Mohammad Shariful;Bhattacharya, Satya Sundar;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.288-297
    • /
    • 2015
  • In this study, wind conditions and its energy potential have been assessed by conducting a Weibull analysis of the wind speed data (over the period of 2002-2011) measured from a port city (Mongla) and an isolated island (Sandwip) in Bangladesh. The monthly mean wind speed at Mongla ranged from 1.60 m/s (December) to 2.47 m/s (April). The monthly values of Weibull shape parameter (k) were from 1.27 to 2.53. In addition, the values of the scale parameter (c) and the monthly wind power density ranged from 1.76 to 2.79 m/s and 3.95 to $17.45W/m^2$, respectively. The seasonal mean wind speed data varied from 1.72 (fall) to 2.29 m/s (spring) with the wind power density from 5.33 (fall) to $14.26W/m^2$ (spring). In the case of Sandwip, the results were comparable to those of Mongla, but moderate reductions in all the comparable variables were observed. The wind data results of these two areas have been compared with those of eight other locations in the world with respect to wind power generation scale. According to this comparison, the wind power generation scale for Mongla and Sandwip was adequate for stand-alone small/micro-scale applications such as local household consumption, solar-wind hybrid irrigation pumps, and battery charging.

Wind characteristics of a strong typhoon in marine surface boundary layer

  • Song, Lili;Li, Q.S.;Chen, Wenchao;Qin, Peng;Huang, Haohui;He, Y.C.
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-15
    • /
    • 2012
  • High-resolution wind data were acquired from a 100-m high offshore tower during the passage of Typhoon Hagupit in September, 2008. The meteorological tower was equipped with an ultrasonic anemometer and a number of cup anemometers at heights between 10 and 100 m. Wind characteristics of the strong typhoon, such as mean wind speed and wind direction, turbulence intensity, turbulence integral length scale, gust factor and power spectra of wind velocity, vertical profiles of mean wind speed were investigated in detail based on the wind data recorded during the strong typhoon. The measured results revealed that the wind characteristics in different stages during the typhoon varied remarkably. Through comparison with non-typhoon wind measurements, the phenomena of enhanced levels of turbulence intensity, gust factors, turbulence integral length scale and spectral magnitudes in typhoon boundary layer were observed. The monitored data and analysis results are expected to be useful for the wind-resistant design of offshore structures and buildings on seashores in typhoon-prone regions.

A Sensitivity and Performance Analysis for Torque Mode Switching on 2MW Direct Drive Wind Turbine Generator (2MW급 직접구동형 풍력발전기의 풍황 민감도 및 토크모드 스위칭 성능 해석)

  • Rho, Joo-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1455-1460
    • /
    • 2014
  • Wind turbine generators were designed on general regulations of wind condition. At real situations, it could be different from the design conditions. There are many control methods and definitions of transient region, because an efficient wind turbine generator control logic is the important matter in generator performance and annual energy production at real conditions. In this document, the power generation sensitivity for wind speed and turbulence intensities was defined to know the sensitive transient region. Wind conditions are applied for the ranges of 7~10m/s mean wind speed and 14~20% turbulence intensity. The sensibility of HR-D86 wind generator was increased in transient region(8~10m/s) on power curve diagram through a torque control to a pitch control. And then GH-bladed simulations was performed for performance analysis of the torque mode switching in transient region on 2MW direct drive wind generator(HR-D86) which is designed IEC class II for onshore. Through the sensitivity and performance analysis, the sensitivity for real wind condition could be the performance index for an wind generator. And the torque mode switching in transient region can increase the mean power generation on HR-D86 wind turbine generator.

Pedestrian level wind speeds in downtown Auckland

  • Richards, P.J.;Mallinson, G.D.;McMillan, D.;Li, Y.F.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.151-164
    • /
    • 2002
  • Predictions of the pedestrian level wind speeds for the downtown area of Auckland that have been obtained by wind tunnel and computational fluid dynamic (CFD) modelling are presented. The wind tunnel method involves the observation of erosion patterns as the wind speed is progressively increased. The computational solutions are mean flow calculations, which were obtained by using the finite volume code PHOENICS and the $k-{\varepsilon}$ turbulence model. The results for a variety of wind directions are compared, and it is observed that while the patterns are similar there are noticeable differences. A possible explanation for these differences arises because the tunnel prediction technique is sensitivity to gust wind speeds while the CFD method predicts mean wind speeds. It is shown that in many cases the computational model indicates high mean wind speeds near the corner of a building while the erosion patterns are consistent with eddies being shed from the edge of the building and swept downstream.

Analysis of hurricane directionality effects using event-based simulation

  • Huang, Zhigang;Rosowsky, David V.
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.177-191
    • /
    • 2000
  • This paper presents an approach for evaluating directionality effects for both wind speeds and wind loads in hurricane-prone regions. The focus of this study is on directional wind loads on low-rise structures. Using event-based simulation, hurricane directionality effects are determined for an open-terrain condition at various locations in the southeastern United States. The wind speed (or wind load) directionality factor, defined as the ratio of the N-year mean recurrence interval (MRI) wind speed (or wind load) in each direction to the non-directional N-year MRI wind speed (or wind load), is less than one but increases toward unity with increasing MRI. Thus, the degree of conservatism that results from neglecting directionality effects decreases with increasing MRI. It may be desirable to account for local exposure effects (siting effects such as shielding, orientation, etc.) in design. To account for these effects in a directionality adjustment, the factor described above for open terrain would need to be transformed to other terrains/exposures. A "local" directionality factor, therefore, must effectively combine these two adjustments (event directionality and siting or local exposure directionality). By also considering the direction-specific aerodynamic coefficient, a direction-dependent wind load can be evaluated. While the data necessary to make predictions of directional wind loads may not routinely be available in the case of low-rise structures, the concept is discussed and illustrated in this paper.