• Title/Summary/Keyword: Mean wave overtopping

Search Result 16, Processing Time 0.021 seconds

Reliability Analysis of Maximum Overtopping Volume for Evaluating Freeboard of Vertical Breakwaters (직립식 방파제의 마루높이 산정을 위한 최대월파량에 대한 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.154-162
    • /
    • 2011
  • A reliability analysis model is developed for evaluating the crest freeboard of vertical breakwaters based on the concepts of maximum overtopping volume of individual wave. A reliability function is formulated by defining the margin of admissible overtopping volume and maximum overtopping volume that is depend on the number of overtopping waves, dimensionless crest freeboard, and mean overtopping discharge. In addition, Level III MCS technique is straightforwardly suggested by which the related empirical parameters to reliability function can be considered to be random variables with the wide range of different uncertainties. It can be possible to calculate the probabilities of failure according to the relative crest freeboard with the variations of the incident wave directions, the structural types of vertical breakwaters, and admissible overtopping volumes in conditions of the long and short crested-waves.

Vulnerability Analyses of Wave Overtopping Inundation by Synthesized Typhoons with Sea-Level Rise (해수면 상승과 빈도 합성태풍이 고려된 월파범람 위험성 분석)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.253-264
    • /
    • 2019
  • Storm surges caused by a typhoon occur during the summer season, when the sea-level is higher than the annual average due to steric effect. In this study, we analyzed the sea-level pressure and tidal data collected in 1 h intervals at Incheon, Kunsan, Mokpo, Seogwipo stations on the Yellow Sea coast to analyze the summer season storm surge and wave overtopping. According to our analyses, the summer mean sea-level rise on the west and south coasts is approximately 20 cm and 15 to 20 cm higher than the annual mean sea-level rise. Changes in sea-level rise are closely related to changes in seasonal sea-level pressure, within the range of 1.58 to 1.73 cm/hPa. These correlated mechanisms generates a phase difference of one month or more. The 18.6 year long period tidal constituents indicate that in 2090, the amplitude of the $M_2$ basin peaks on the southwest coast. Therefore, there is a need to analyze the target year for global warming and sea-level rise in 2090. Wave overtopping was simulated considering annual mean sea-level rise, summer sea level rise, the combined effect of nodal factor variation, and 100-year frequency storm surge. As a result, flooding by wave overtopping occurs in the area of Suyong Bay, Busan. In 2090, overtopping discharges are more than doubled than those in Marine City by the recent typhoon Chaba. Adequate coastal design is needed to prepare for flood vulnerability.

Estimate of Wave Overtopping Rate on Vertical Wall Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 직립구조물의 월파량 산정)

  • Kwak, Moon Su;Kobayashi, Nobuhisa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2021
  • This study established a numerical model capable of calculating the wave overtopping rate of coastal structures by nonlinear irregular waves using the FUNWAVE-TVD model, a fully nonlinear Boussinesq equation model. Here, a numerical model was established by coding the mean value approach equations of EurOtop (2018) and empirical formula by Goda (2009), and adding them as subroutines of the FUNWAVE-TVD model. The verification of the model was performed by numerically calculating the wave overtopping rate of nonlinear irregular waves on vertical wall structures and comparing them with the experimental results presented in EurOtop (2018). As a result of the verification, the numerical calculation result according to the EurOtop equation of this model was very well matched with the experimental result in all relative freeboard (Rc/Hmo) range under non-impulsive wave conditions, and the numerical calculation result of empirical formula was evaluated slightly smaller than the experimental result in Rc/Hmo < 0.8 and slightly larger than the experimental result in Rc/Hmo > 0.8. The results of this model were well represented in both the exponential curve and the power curve under impulsive wave conditions. Therefore, it was confirmed that this numerical model can simulate the wave overtopping rate caused by nonlinear irregular waves in an vertical wall structure.

Methodology for Risk Assessment for Exposure to Hurricane Conditions

  • Edge, Billy L.;Jung, Kwang-Hyo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • An analysis of potential flooding by storm surge and wave run-up and overtopping can be used to evaluate protection afforded by the existing storm protection system. The analysis procedure can also be used to evaluate various protection alternatives for providing typhoon flood protection. To determine risk, the storm surges for both historical and hypothetical are compiled with tide conditions to represent high, slack and low water for neap, spring and mid range tides to use with the statistical procedure known as the Empirical Simulations Technique (EST). The EST uses the historic and hypothetical events to generate a large population of life-cycle databases that are used to compute mean value maximum storm surge elevation frequency relationships. The frequency-of-occurrence relationship is determined for all relevant locations along the shoreline at appropriate locations to identify the effect using the Empirical Storm Simulation (EST). To assist with understanding the process, an example is presented for a study of storm surge analysis for Freeport, Texas. This location is in the Gulf of Mexico and is subject to hurricanes and other tropical storms that approach from the Atlantic Ocean.

Experimental Study of Mean Wave Overtopping for Rubble-Mound Structure (경사식구조물의 평균 월파량 실험연구)

  • Mun, Gang Il;Bae, Il Ro;Ma, Seung Ah;Lee, Jong In
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.304-304
    • /
    • 2020
  • 항만구조물의 방파제 또는 방파호안의 마루높이는 배후지역의 활용도에 따라 내습파의 월파로 인한 전달파 또는 월파량에 의해 결정되기 때문에 월파량산정은 항만구조물을 설계함에 있어서 주요한 설계인자이다. 그동안 국내에서는 항만구조물 설계시 주로 외국의 기준이나 기법을 활용하고 있는 실정이다. 국내 항만설계기준에서는 Goda도표를 이용하여 직립제 및 방파호안에 대한 월파량 산정방법을 제시하고 있으나, 도표축이 log로 되어 있어 내삽 또는 외삽시 사용자에 따라 월파량 차이가 발생할 수 있다. 국내의 해역특성 및 최근 설계동향을 반영한 월파량 산정식의 개발이 필요하고, 동일조건에 대한 동일한 월파량 산정결과가 도출될 수 있어야 한다. 최근의 대표 연구성과인 EurOtop(2007)과 같이 지수함수의 형태로 월파량 산정식을 제시하고자 한다. 경사식구조물의 평균월파량 산정식 도출을 위해 적용한 구조물 위치에서의 수심(dt)은 0.40m, 0.55m, 0.70m 이다. 적용수심을 서로 다르게 한 것은 기존의 대부분의 연구에서 적용하지 않았던 구조물 위치에서의 쇄파조건을 고려하기 위한 것이다. 실험파는 Bretschneider-Mitsuyasu 주파수 스펙트럼을 사용한 불규칙파를 적용하였다. 본 연구에서는 주 피복재로 TTP를 대상으로 하였고, 주기 및 파고를 다양한 조건에서 수리실험을 수행하였다. 본 연구의 실험결과는 월파량 계측을 통해 분석된 평균 월파량을 적절한 산정식으로 나타내기 위해 EurOtop(2007)의 기존 월파량 산정식 형태에 대입하여 비교하여 분석하였다. 따라서, 본 논문은 월파량 산정식 제시를 통해 보다 합리적인 항만구조물의 마루높이 산정이 가능하게 하고, 또한 월파량 산정과 관련된 실험자료 구축을 통해 신뢰성해석 자료 및 수치모형의 검증 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Flow Measurement and Characteristic Analysis in the Effluent Regions of the Samcheonpo Thermal Power Plant(TPP) (삼천포 화력발전소 방류수로 및 방류해역의 흐름 관측 및 특성분석)

  • Cho, Hong-Yeon;Jeong, Shin-Taek;Kang, Keum-Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.329-337
    • /
    • 2006
  • A small hydro-power plant operated by cooling water discharged from the power plant is under construction. In this study, the flow characteristics of the effluent channel and the outfall coastal zone in which the facilities are constructed have been measured and analysed. The flow pattern is highly dependent on the effluent discharge and clearly classified as these typical areas; the upstream and downstream areas of the weir, and the outfall coastal zone. The discharge and the width of the channel in the upstream area of the weir are increased step by step, so the water level fluctuation is small. The flow overtopping the weir is rapidly changing and has highly vertical fluctuation patterns after hydraulic jump just below the weir. The flow pattern in the outfall zone is directed toward the seaward direction and the velocity is dominated by the tidal level fluctuation. The mean tidal range in this area is about 10% greater than that of the Tongyeong tidal gauging station and the wave effects are negligible because of the sheltering effects of this area.