• Title/Summary/Keyword: Mean time to failure

Search Result 511, Processing Time 0.027 seconds

Photovoltaic Hybrid Systems Reliability and Availability

  • Zahran, Mohamed B.A.
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.145-150
    • /
    • 2003
  • Reliability, availability, and cost have been the major concerns for photovoltaic hybrid systems since their beginning as primary sources for much critical applications like communication units and repeaters. This paper descnbes the performance of two hybrid systems, photovoltaic-battery, wind-turbine coupled with the public-grid (PVBWG) hybrid system and photovoltaic-battery, wind-turbine coupled With the diesel generator (PVBWD) hybrid system The systems are sized to power a typical 300W/48V de telecommunication load continuously throughout the year Such hybrid systems consist of subsystems, which in turn consist of components Failure of anyone of these components may cause failure of the entire system. The reliability and availability basics, and estimation procedure for the two proposals are introduced also in this paper. The PVBWG and PVBWD system configurations are shown with the relevant mean-time-between-faIlure (MTBF) and failure rate (${\lambda}$) of each component. The characteristics equations of the two systems are deduced as a function of operating hours and the percentage of sun and wind availabilities per day. The system probability failure as well as the reliability is estimated based on the fault tree analysis technique. The results show that, by using standard or normal components MTBF, the PVBWG is more reliable and the time of periodic maintenance period is more than one year especially in the rich sites of both sun and wind, but PVBWD competes else Also, in the first five years from the system installation, the system is quit reliable and may not require any maintenance. The results show also, as the sun and wind are available, as the system reliable and available.

Acute Respiratory Failure Treated with Veno-venous Extracorporeal Membrane Oxygenation (정-정맥 체외막형산소화요법을 이용한 급성호흡부전의 치료)

  • Kim, Hyoung-Soo;Han, Sang-Jin;Hong, Kyung-Soon;Yoon, Duck-Hyoung;Lee, Chang-Youl;Lee, Myung-Goo;Hong, Won-Ki;Lee, Sun-Hee;Kim, Kun-Il;Lee, Hee-Sung;Cho, Sung-Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.68 no.2
    • /
    • pp.62-66
    • /
    • 2010
  • Background: Extracorporeal membrane oxygenation (ECMO) during severe acute respiratory failure helps to recover the pulmonary function. This study evaluated our experience with veno-venous ECMO in adult patients with acute respiratory failure. Methods: From January 2007 to July 2009, ECMO was used on 54 patients. Of these 54 patients, 7 were placed on veno-venous ECMO for acute respiratory failure. The indications of ECMO were based on the lung dysfunction measured as a $PaO_2/FiO_2$ ratio <100 mm Hg on $FiO_2$ of 1.0, or an arterial blood gas pH <7.25 due to hypercapnia despite the optimal treatment. $EBS^{(R)}$, $Bio-pump^{(R)}$, and Centrifugal Rotaflow $pump^{(R)}$ were used and all cannulations were performed percutaneously via both femoral veins. When the lung function was improved, an attempt was made to wean on ECMO at moderate ventilator settings followed by decannulation. Results: Five of the 7 patients were male and the mean age was $46.3{\pm}18.3$. The causes of acute respiratory failure were 3 cases of pneumonia, 2 near-drownings, 1 pulmonary hemorrhage due to acute hepatic failure and 1 mercury vapor poisoning. The mean support time of ECMO was $17.3{\pm}13.7$ days. Of the 7 patients implanted with ECMO, 5 patients (71%) were weaned off ECMO and 3 patients (43%) survived to hospital discharge after a mean 89.6 hospital days. Conclusion: The early use of ECMO for acute respiratory failure in adults due to any cause is a good therapeutic option for those unresponsive to the optimal conventional treatments.

Reliability of a Consecutive-k-out-of n : G System with Common-Cause Outage

  • Kim, Ho-Yong;Jung, Kyung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.3
    • /
    • pp.181-193
    • /
    • 1992
  • This paper shows the model of a consecutive-k-out-of-n :G system with common-cause outages. The objective is to analytically derive the mean operating time between failures for a non-repairable component system. The average failure time of a system and the system availability are also considered. Then, the model is extended to a system with repairable components and unrestricted repair, in which service times are exponentially distributed.

  • PDF

Reliability Evaluation of ATC for High Speed Line Center (고속 Line Center의 ATC 신뢰성 평가)

  • Lee S.W.;Kim D.H.;Lee H.K.;Shin D.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1914-1917
    • /
    • 2005
  • Recently, the reliability evaluation and analysis are applied for many industrial products, and many products are required to guarantee in quality and in efficiency. The purpose of this paper is to present some of reliability evaluation methodologies that are applicable to machine tools. Especially ATC(Automatic Too Changer), which is core component of line center, was chosen as the target of the reliability evaluation and analysis. The scope of research is reliability prediction, reliability test and evaluates their results. The results of this research has shown the failure rate, MTBF(Mean Time Between Failure), reliability for those components and real tests reliability through constructed reliability test-bed. It is expected that proposed methodologies will increase reliability for high speed line center.

  • PDF

Reliability Evaluation of ATC for High-Speed Line Center (고속 Line Center의 ATC 신뢰성 평가)

  • Lee Seung-Woo;Lee Hwa-Ki;Shin Dong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.111-118
    • /
    • 2006
  • Recently, the reliability evaluation and analysis are applied far many industrial products which are required to guarantee in quality and efficiency. The purpose of this paper is to present some of reliability evaluation methodologies that are applicable to machine tools. Especially ATC (Automatic Tool Changer), which is a core component of line center, was chosen as the target of the reliability evaluation and analysis. The scope of research is reliability prediction, reliability test and evaluates their results. The results of reliability evaluation have shown the failure rates, MTBF (Mean Time Between Failure), reliability for those components of ATC and real tests reliability through the constructed reliability test-bed. It is expected that proposed methodologies would increase reliability for a high-speed line center.

Method and Application of Reliability Evaluation for Core Units of Machine Tools (공작기계 핵심 Unit의 신뢰성 평가 기법 및 활용에 관한 연구)

  • 이승우;송준엽;황주호;이현용;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.43-46
    • /
    • 1997
  • Reliability engineering is regarded as the major and important roll for all industry. And advanced manufacturing systems with high sped and intelligent have been developing for betterment of machining ability. In this study, we have systemized evaluation of reliability for machinery system. We proposed the reliability assessment and designed and manufactured reliability test-bed to evaluate reliability. In addition we acquired reliability data using test-bed system and made database to handle reliability data. And also we not only use reliability data by analyzing reliability, but also apply design review method using analyzing critical units of machinery system. Form this study, we will expect to guide and increase the reliability engineering in developing and processing phase of high quality product.

  • PDF

A Study on Reliable Control System Using an Additive Redundant Adaptive Controller (가법적 중복적응 제어기를 이용한 신뢰성 제어 시스템에 관한 연구)

  • ;;Zeungnam Bien
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.301-311
    • /
    • 1990
  • A multiple controller structure consisting of a typical feedback controller and an additive redundant controller is proposed for enhancing the reliability of the control system. For the case where the main controller is chosen as a pole assignment controller with input/output measurements and the redundant controller as the Model Reference Adaptive Controller (MRAC) whose reference model is the closed-loop combination of the plant and the main controller, it is proven that the tracking error between the command input and plant output converges to zero under failure in one of the controllers or parameter perturbations of the plant, and further that the reliability measured by Mean Time To Failure (MTTF) is greater than that of the system with only a single main controller. A simulation Example is provided to illustrate reliable operation of the proposed control system against the controller failure.

  • PDF

A Study on the Reliability Analysis Methodology of Passenger Door System of Electrical Type (전기식 출입문 시스템의 신뢰도 분석기법에 관한 연구)

  • Kim, Chul Sub;Lee, Hi Sung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • The door system for railway vehicles is the critical device directly influences on safety and satisfaction of passengers, Recently, electrical type of passenger door system is widely used for EMU type train instead of pneumatic type of passenger door system. The estimation of MTBF and failure rates for electrical type door system is essential. The manufacturor simply provides intrinsic reliability data for the railway operator. But actual reliability data based on operation and maintenance data is not complying with intrinsic reliability. In this study, operation and failure data associated with electrical door system were analyzed in order to determine actual MTBF and failure data. Intrinsic reliability data and service reliability data were studied to finallize much more practical and reliable actual reliability. Relax 2011 was used to predict intrinsic reliability and 217Plus model was also used to estimate of actual reliability data based on field data. Furthermore, it is necessary to keep studying on reliability prediction methodology and applying it in the field and doing research on improvement of reliability through feedback as well.

Empirical Bayesian Prediction Analysis on Accelerated Lifetime Data (가속수명자료를 이용한 경험적 베이즈 예측분석)

  • Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.1
    • /
    • pp.21-30
    • /
    • 1997
  • In accelerated life tests, the failure time of an item is observed under a high stress level, and based on the time the performances of items are investigated at the normal stress level. In this paper, when the mean of the prior of a failure rate is known in the exponential lifetime distribution with censored accelerated failure time data, we utilize the empirical Bayesian method by using the moment estimators in order to estimate the parameters of the prior distribution and obtain the empirical Bayesian predictive density and predictive intervals for a future observation under the normal stress level.

  • PDF

A Hierarchical RAM Simulation Model Framework (계층적 RAM 시뮬레이션 모델 프레임워크)

  • Kim, Hye-Lyeong;Choi, Sang-Yeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.41-49
    • /
    • 2010
  • In this paper, we propose a hierarchical RAM simulation model framework which are used to analyze the RAM specifications on the concept refinement phase. The hierarchical RAM simulation model framework consists of RAM simulation models, class library and each model's input and output data lists. The hierarchical RAM simulation models are co-operated with 3 kinds of model - type I, II, III. Type I, II models are used to analyze the target operational availability and Type III is used to establish the initial RAM specifications. Each model's input and output data lists are defined by considering each model's purpose of RAM analysis. The class library is arranged with each model's classes for implementing the hierarchical simulation models. The proposed framework may be applied for executing the RAM activities effectively.