• Title/Summary/Keyword: Mean strain

Search Result 455, Processing Time 0.027 seconds

Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects (유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성)

  • Ha, J.S.;Koh, S.K.;Ong, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

Comparison of the Impact of an Optimized Ice Cooling Vest and a Paraffin Cooling Vest on Physiological and Perceptual Strain

  • zare, Mansoor;dehghan, Habibollah;yazdanirad, Saeid;khoshakhlagh, Amir hossein
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.219-223
    • /
    • 2019
  • Background: Ice cooling vests can cause tissue damage and have no flexibility. Therefore, these two undesirable properties of ice cooling vest were optimized, and the present study was aimed to compare the impact of the optimized ice cooling vest and a commercial paraffin cooling vest on physiological and perceptual strain under controlled conditions. Methods: For optimizing, hydrogel was used to increase the flexibility and a layer of the ethylene vinyl acetate foam was placed into the inside layer of packs to prevent tissue damage. Then, 15 men with an optimized ice cooling vest, with a commercial paraffin cooling vest, and without a cooling vest performed tests including exercise on a treadmill (speed of 2.8 km/hr and slope of %0) under hot ($40^{\circ}C$) and dry (40 %) condition for 60 min. The physiological strain index and skin temperature were measured every 5 and 15 minutes, respectively. The heat strain score index and perceptual strain index were also assessed every 15 minutes. Results: The mean values of the physiological and perceptual indices differed significantly between exercise with and without cooling vests (P < 0.05). However, the difference of the mean values of the indices except the value of the skin temperature during the exercises with the commercial paraffin cooling vest and the optimized ice cooling vest was not significant (P > 0.05). Conclusions: The optimized ice cooling vest was as effective as the commercial paraffin cooling vest to control the thermal strain. However, ice has a greater latent heat and less production cost.

Theoretical Investigation on the Stress-Strain Relationship for the Porous Shape Memory Alloy (기공을 갖는 형상기억합금의 응력 및 변형률 관계에 대한 이론적 고찰)

  • Lee Jae-Kon;Yum Young-Jin;Choi Sung-Bae
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.8-13
    • /
    • 2004
  • A new three-dimensional model fur stress-strain relation of a porous shape memory alloy has been proposed, where Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory is used. The predicted stress-strain relations by the present model are compared and show good agreements with the experimental results for the Ni-Ti shape memory alloy with porosity of 12%. Unlike linear stress-strain relations during phase transformations by other models from the literature, the present model shows nonlinear stress-strain relation in the vicinity of martensite finish region.

Effect of Pretransplant Donor-specific Blood Transfusion on Cardiac Allograft Survival in Rats (실험쥐모델에서 이식전 제공자 전혈 수혈이 이식심장의 생존에 미치는 영향)

  • 서충헌;박만실
    • Journal of Chest Surgery
    • /
    • v.32 no.11
    • /
    • pp.984-988
    • /
    • 1999
  • Background: Donor-specific blood transfusion(DSBT) before organ transplantation has been demonstrated to prolong allograft survival; the mechanism of this effect has remained unclear. Only a few researches have been performed on this subject in our country. Material and Method: To investigate the effect of DSBT, we selected 5 donor recipient combinations using rats of pure strain such as PVG, ACI, and LEW. One ml of donor whole blood was transfused to each recipient through the femoral vein 7 days prior to transplantation. The donor heart was transplanted to the recipient's abdominal vessels heterotopically using modified Ono and Lindsey's microsurgical technique. Five transplantations were done for each combination. Postoperatively, donor heart beat was palpated everyday through the recipent's abdominal wall. Rejection was defined as complete cessation of donor heart beat. Result: The allogeneic heart grafts transplanted from PVG strain to ACI strain(PVG ACI) without DSBT were acutely rejected(mean survival 10.2 days). With pretransplant DSBT, the cardiac allografts in PVG ACI and LEW PVG combinations survived indefinitely(more than 100 days), those in ACI PVG combination survived 12 to 66 days(mean 31.8 days), those in PVG LEW survived 8 to 11 days(mean 10.0 days), and those in ACI LEW survived 7 to 9 days(mean 8.0 days). In brief, DSBT prior to heart transplantation was definitely effective in PVG ACI and LEW PVG combinations and moderately effective in ACI PVG combination, but not effective in PVG LEW and ACI LEW combinations. Conclusion: DSBT prior to heart transplantation showed variable effects, but might prolong cardiac allograft survival indefinitely in some donor recipient strain combinations. The mechanism of this effect should be further investigated.

  • PDF

Precipitation and Recrystallization of V-Microalloyed Steel during Hot Deformation (V 첨가강의 고온변형시 석출 및 재결정에 관한 연구)

  • 조상현;김성일;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.48-54
    • /
    • 1996
  • The continuous deformation , multistage deformation and stress relaxation were carried out to investigate the strain induced procipitation by torsion tests in the range of 1000∼800$^{\circ}C$, 0.05/sec∼5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests and the distribution of percipitates increased at higher strain rate and the mean size of precipitates was found to be about 50nm. The precipitation starting time decreased with increasing strain rate from 0.05/sec to 5 /sec and pre-strain. The effect of deformation conditions on the no-recrystallization temperature(Tnr) was determined in the multistage deformation with declining temerature. The Tnr decreased with increasing strain and strain rae. In the controlled rolling, grain refinement and precpitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

Controlled Deformation of Microalloyed Steel by Precipitation and Recrystallization (미량원소첨가강의 석출 및 재결정에 의한 제어변형)

  • 조상현;김성일;유연철
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.102-109
    • /
    • 1997
  • The multistage deformation and stress relaxation were carried out to investigate the strain induced precipitation by torsion tests in the range of 1000~80$0^{\circ}C$, 0.05~5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests. The distribution of precipitates increased, as the strain rate increased and the mean size of precipitates was found to be about 10~30nm. The precipitation starting time$(P_s)$ decreased with increasing strain rate and the amount of pre-strain. The effect of deformation conditions on the no-recrystallization temperature$(T_nr)$ was also determined in the multistage deformation. $T_nr$ Tnr decreased with increasing the strain and strain rate. In the controlled rolling simulation, grain refinement and precipitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

A Study on the Effect of corner Angle on Cup Drawing (코너각이 용기에 성형에 미치는 영향에 관한 연구)

  • 김진무;유호영
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.14-21
    • /
    • 1999
  • Trapezoid cups and square ones have been deep-drawn to 45mm in depth. Displacements and strains have been analysed by FEM and experiment. Strains and effective strains in the corner flanges of trapezoid cups have been compared with those in square cups. The results have shown that because of shear strains on the corner flange, it is necessary to adopt effective strain for comparing strains, mean vale of effective strains in the corner flange with a corner angle of 72 degrees is narly equal to those with a corner angle of a right angle and mean value of effective strains with a corner angle of 102 degrees is smaller than those with a corner angle of a right angle.

  • PDF

Prediction on Flow Stress Curves and Microstructures of 304 Stainless Steel (304 스테인레스강의 고온 유동응력곡선과 미세조직의 예측)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.171-175
    • /
    • 1999
  • the high temperature deformation behavior of 304 stainless steel was characterized by the hot torsion test. Continuous deformation was carried out at the temperature ranges 900-110$0^{\circ}C$ and the strain rate ranges 5x10-2~5/sec. The formulation of the flow stress curves was developed as subtraction form which was based on dynamic softening mechanisms The volume fraction of dynamic recrystallization and the mean grain size could be expressed as a function of deformation variables temperature (T) strain ($\varepsilon$) strain rate ($\varepsilon$) The calculated values of flow stress and mean grain size could be well matched with experimental values.

  • PDF

Multiaxial ratcheting behavior of Inconel 718 at elevated temperature (Inconel 718 의 고온 다축피로하중 하에서의 라체팅 거동)

  • Kim, Hyo-Shin;Kim, Kwang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.344-349
    • /
    • 2008
  • Ratcheting behavior of IN 718 was investigated at $649^{\circ}C$ under various proportional and non-proportional loading conditions with stress control. The material response was initially elastic but substantial plastic strain was developed as the material softened cyclically. Ratcheting strain was measured to near fatigue life, and is found to have three stages of development - primary, secondary (steady-state) and tertiary. The secondary stage dominates for most cases. Under the same equivalent stress amplitude and mean stress, it was revealed that circular path loading gives higher ratcheting rates and shorter lives than linear paths and that the more ratcheting occurs when the cyclic load is in the same direction as the mean stress. The ratcheting strain at failure depends not only on its rate but also on fatigue life itself, and it is not a primary life-determining factor.

  • PDF

Application of Two Dimensional Filtering Technique for the Precision Calculation of Crustal Deformation Parameters (지각변동 파라메터의 정밀계산을 위한 2차원 필터링 기법의 적용)

  • 윤홍식
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2000
  • This paper deals with the application of two dimensional filtering technique for strain calculation using old and new geodetic data, and discusses the characteristics of general strain pattern in terms of seismic activity and tectonics. The mean rate of maximum shear strain is $0.12{\mu}/yr$. The mean direction of principal axes distribution of the compression is about $N80^{\circ}E$.

  • PDF