• Title/Summary/Keyword: Mean monthly temperature

Search Result 239, Processing Time 0.028 seconds

The Characteristics of Air Temperature according to the Location of Automatic Weather System (AWS 설치장소에 따른 기온 특성)

  • Joo, Hyong-Don;Lee, Mi-Ja;Ham, In-Wha
    • Atmosphere
    • /
    • v.15 no.3
    • /
    • pp.179-186
    • /
    • 2005
  • Due to several difficulties, a number of Automatic Weather Systems (AWS) operated by Korea Meteorological Administration (KMA) are located on the rooftop so that the forming of standard observation environment to obtain the accuracy is needed. Therefore, the air temperature of AWSs on the synthetic lawn and the concrete of the rooftop is compared with the standard observation temperature. The hourly mean temperature is obtained by monthly and hourly mean value and the difference of temperature is calculated according to the location, the weather phenomenon, and cloud amount. The maximum and the minimum temperatures are compared by the conditions, such as cloud amount, the existence of precipitation or not. Consequently, the temperature on the synthetic lawn is higher than it on the concrete so that it is difficult to obtain same effect from ASOS, on the contrary the installation of AWS on the synthetic lawn seem to be inadequate due to heat or cold source of the building.

A Study on the Relationship Between Radial Growth and Climate Factors by Regions in Korean Pine (Pinus koraiensis) (지역별 잣나무의 연륜생장과 기후인자와의 관계 연구)

  • Lee, Sangtae;Bae, Sang-Won;Jang, Seok Chang;Hwang, Jaehong;Chung, Junmo;Kim, Hyun-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.733-739
    • /
    • 2009
  • This study was carried out to analyze the relationship between major climatic factors (monthly temperature, precipitation) and radial growth of Korean Pine (Pinus koraiensis) in Inje-gun(Mt. Seorak), Sanchung-gun and Namwon-si(Mt. Jiri). Radial growth measurements were crossdated and correlated with climate variables. The climatic factors used were monthly mean temperature and monthly precipitation from August of previous year to September of the current year. In Inje-gun, radial growth was negatively correlated with monthly mean temperature in April, May, June, and August of the current year and was positively correlated with precipitation in August, October of the previous year and in April, August of the current year. Sanchung-gun showed a negative correlation with monthly mean temperature in September of the previous year and August of the current year but positive correlation in January of the current year. In contrast, precipitation in September of the previous year and August of the current year showed a positive influence. The results suggest that high temperature together with low precipitation may thus cause water stress and thereby limit radial growth in this region. In Namwon-si, the climategrowth relationships show that radial growth was negatively correlated with monthly mean temperature in August, October of the previous year and June of the current year. But August of the previous year and May, August of the current year in precipitation was positively correlated with radial growth. In the study areas, precipitation plays an important role for the radial growth of Kroean Pine (Pinus koraiensis). The results suggest that precipitation is important in the radial growth because water deficit in trees would take place in response to high temperature in the study area. Also there was some differences with study areas in the effects of both climatic variables probably as a result of different stand structure and geographical conditions and micro-climate.

A Study on the Photosynthetic Rates of Panax ginseng in the Different Age and Provinces (지역별, 연령별 산양삼의 광합성특성에 관한 연구)

  • Seo, Se Myung;Woo, Su-Young;Lee, Dong-Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.357-361
    • /
    • 2007
  • Six research areas - Hongcheon, Sangju, Jinan, Punggi, Hamyang and aricultural ginseng field near Sangju- were selected to compare microenvironments and photosynthetic capacity. Monthly mean temperature, precipitation and number of hours of clean days have to be identified because these factors are strongly related to the growth and photosynthesis of forest ginseng. Generally, monthly mean temperature in Sangju was highest at June. Monthly mean precipitation in Hongcheon was higher than other areas. In addition, numbers of clean days in Punggi were highest on May and June. Obviously, photosynthetic capacity of younger age class of forest ginseng grown in every 5 places are getting decreasing when forest ginseng becoming olds.

A Study on the Sea Level Variations in Korean Coastal Area (한국연안해역에서의 해면수위의 변동에 관한 연구)

  • 이경연;김동수;손창배;김창제
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 1999
  • This paper is to estimate the long and short term variations of mean sea level in Korean coastal waters by identifying interrelations among the mean sea level, atmospheric pressure and air temperature along the coast. For this, long-term tidal data observed at tidal and weather observation stations were brought into a statistical analysis. It was noted that, in a general sense, an inverse relationship exists between the sea level and the atmospheric pressure and a positive relationship between the sea level and air temperature, respectively. The maximum difference of monthly mean sea level was in the range of 21 to 25 cm at the eastern and southeastern coasts, meanwhile more than 30 cm being in both in southern and western coasts. It was also noted that mean sea level continues to rise in a long-term basis. Long-term variation of mean sea level trends to rise 0.10 ∼ 0.44 cm per year for each region. However, the long-term variation of mean sea level in the isolated islands shows a different trend, Ullngdo being 0.41 cm fall per year and Chejudo being 0.44 cm rise per year.

  • PDF

Periodic Variations of Water Temperature in the Seas Around Korea(I) Annual and Secular Variations of Surface Water Temperature, Kumun-Do Region, Southern Sea of Korea (한국 근해 수온의 주기적 변화(I) 남해의 거문도해역 표면수온 년주변화 및 영년변화)

  • Hahn, Sangbok
    • 한국해양학회지
    • /
    • v.5 no.1
    • /
    • pp.6-13
    • /
    • 1970
  • Ten days and monthly mean temperatures were analysed daily data observed during July, 1916 to March, 1970 statistically. Periodic characters were calculated by Δn, new method of approximate solution of Schuster Method. According to ten days mean temperatures, annual variation function is F($\theta_d$)=16.29-5.27 cos $\theta_d$+0.75 cos2 $\theta_d$-3.14 sin $\theta_d$+1.16 sin2 $\theta_d$-0.63 sin $\3{theta}_d$, where $\theta_d$=$-\frac{\pi}{18}$(d-3), d is the order of ten days period, 1 to 36. Annual mean water temperature is 16.3$^{\circ}C$, minimum in the last ten days of February 10.9$^{\circ}C$, maximum in the last ten days of August 24.5$^{\circ}C$. Periodic character of secular variation shows 11 year and its curve is F($\theta_y$)=16.29+0.53 cos $\theta_y$ -0.16cos $2{\theta}_y$+0.10 cos$3{\theta}_y$-0.10 sin $\theta_y$, where $\theta_y$=2$-\frac{2\pi}{11}$(y-1920), y is calendar year. And the relation between air temperature x and water temprature y is following. y=9.67 1.035$\^x$

  • PDF

The Characteristics of Radiation, Temperature and Wind Direction around King Sejong Station, Antarctica (남극 세종 기지 주변의 복사, 기온 및 풍향의 특징)

  • Choi, Tae-Jin;Lee, Bang-Yong;Kim, Seong-Joong;Park, Yoo-Min;Yoon, Young-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.397-408
    • /
    • 2006
  • Due to the temporal and spatial variability of the warming at and near the Antarctic Peninsular, it is required to better understand local climate at the issued region. The purpose of the study are to characterize surface radiation, air temperature and wind direction and investigate their relations at the King Sejong Station near the Antarctic Peninsular during last three and half years. While the study site was a weak radiative energy sink (positive net radiation) with annual mean of 15-20 Wm-2, it played a role as a strong sink in summer (December to January) with mean of 85 Wm-2, a magnitude that was significantly larger than those at other surface covered with snow or ice in Antarctica. Monthly averaged air temperature ranged from -7.7-2.8oC and the variations of monthly averaged air temperature showed the distinct differences with year. Northwesterly, westerly and easterly were dominant and the variability of air temperature could be explained by the variability of the frequency of wind direction with cold easterly and warm northwesterly/northerly to some degree, which in turn influenced radiation budget through albedo in summer.

  • PDF

Heat Budget at Gampo in the Eastern Coast of Korea in 2006 (2006년 동해안 감포의 열수지)

  • Choi, Yong-Kyu;Han, In-Seong;Suh, Young-Sang;Go, Woo-Jin;Kim, Sang-Woo
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • Based on the monthly weather report of Korea Meteorological Administration (KMA) and daily sea surface temperature (SST) data from National Fisheries Research and Development Institute (NFRDI) in 2006, heat budget was estimated at Gampo in the eastern coast of Korea, the region occuring the cold water known as upwelling in summer. Net heat flux was transported from the air to the sea surface during February to November, and it amounts to $345Wm^{-2}$ in monthly mean value. During December to January, the transfer of net heat flux was conversed from the sea surface to the air with $-56Wm^{-2}$ in minimum of monthly mean value in January. Long wave radiation was ranged from $6Wm^{-2}\;to\;106Wm^{-2}$. Sensible heat was varied from $-36Wm^{-2}$(June) to $61Wm^{-2}$(February) and showed negative values from April to August. Latent heat showed $20Wm^{-2}$(July) with its minimum in July and $49Wm^{-2}$ with its maximum in March in monthly mean value. The annual mean of net heat flux is $129Wm^{-2}$, giving an annual heat surplus of $22Wm^{-2}$. Thus, during summer, the upwelled cold water at Gampo, appears to compensate the heat gain. However the ways in which these compensations are accomplished remains to be clarified.

Periodic Variations Of Water Temperature In The Seas Around Korea(II). Annual And Long Term Variations Of Surface Water Temperature In The Regions Of Mishima And Okinoshima (한국 근해 수온의 주기적 변화(II). 삼도와 중지도 해역 표면수온의 년주변화 및 장주기 변화)

  • Hahn, Sangbok
    • 한국해양학회지
    • /
    • v.5 no.2
    • /
    • pp.41-51
    • /
    • 1970
  • Periodic characters of water temperature in the regions of the Mishima and the Okinoshima were derived through the analysis of the five days interval data during 1914 to 1970 mainly. In terms of ten days mean temperatures, annual variation function of the Mishima region, Korea Strait, is F($\theta_d$)=17.45-5.34 cos $\theta_d$-3.77 sin $\theta_d$+0.62 sin $2\theta_d$ -0.52 sin $3\theta_d$, where $\theta_d$=$\frac{\pi}{18}$(d-2), d is the order of ten days period 1 to 36. And in the region of Okinoshima, Tsushima Strait, we find F($\theta_d$)=18.88-5.39 cos $\theta_d$-3.60 sin $\theta_d$+0.52 sin $2\theta_d$. The annual mean temperature is 17.4$^{\circ}C$ in the Mishima region, 18.9$^{\circ}C$ in the Okinoshima region, and the amplitudes of annual variation functions are 7$^{\circ}C$ in both regions with minimum temperature in the middle ten days of February, maximum in the middle ten days of August. The long term variations of surface water temperature with 12 5 years period were observed in the annual mean temperature, monthly mean temperatures and the fixed day temperatures of every year. In addition to these, relatively short term variations were also found significant periods of 3 years, 4 years and 2 years, respectively.

  • PDF

Influences of Temperature Change Rates and Impervious Surfaces on the Intra-City Climatic Patterns of Busan Metropolitan Area (부산광역시 국지적 기후 패턴에 대한 기온변화율과 불투수면의 영향)

  • PARK, Sun-Yurp
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.199-217
    • /
    • 2016
  • Influences of seasonal warming and cooling rates on the annual temperature patterns were analyzed based on the meteorological data from 13 weather stations in Busan Metropolitan Area(BMA), Korea during 1997~2014. BMA daily temperature time-series was generalized by Fourier analysis, which mathematically summarizes complex, regularly sampled periodic records, such as air temperature, into a limited number of major wave components. Local monthly warming and cooling rates of BMA were strongly governed by the ocean effect within the city. March($1.121^{\circ}C/month$) and November(-$1.564^{\circ}C/month$) were the two months, when the most rapid warming and cooling rates were observed, respectively during the study period. Geographically, spring warming rates of inland increased more rapidly compared to coastal areas due to weaker ocean effect. As a result, the annual maximum temperature was reached earlier in a location, where the annual temperature range was larger, and therefore its July mean temperature and continentality were higher. Interannual analyses based on average temperature data of all weather stations also showed that the annual maximum temperature tended to occur earlier as the city's July mean temperature increased. Percent area of impervious surfaces, an indicator of urbanization, was another contributor to temperature change rates of the city. Annual mean temperature was positively correlated with percent area of impervious surfaces, and the variations of monthly warming and cooling rates also increased with percent area of impervious surfaces.