• Title/Summary/Keyword: Mean air flow rate

Search Result 167, Processing Time 0.023 seconds

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

Heat Transfer from a Sphere in Fluctuating Flow (맥동류에 놓인 구로부터의 열전달)

  • Kwon Young-Pil;Lee Kye-Cheul
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.2
    • /
    • pp.185-193
    • /
    • 1987
  • The heat transfer characteristics from a solid sphere in a fluctuating air flow is simulated numerically in the range of the Reynolds numbers, $1\;{\leqslant}\;Re\;{\leqslant}\;40.$ Such a situation may be encountered in forced convection from a heated spherical particle in a sound field or oscillat-ing flow. The amplitude and phase delay in the heat transfer response to the flow oscillation are computed for a small amplitude flow. The instantaneous response of heat transfer is simulated for the large amplitude oscillation and compared with the quasi-steady response. The effect of the oscillation on the time - mean value in the local and overall heat transfer rate is discussed along with the change in the flow .field.

  • PDF

An Experimental Study on Heat Transfer in the Pulsating Pipe Flow (원관내 맥동유동의 열전달에 관한 실험적 연구)

  • Kim, Hi Yong;Kim, Chang Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.78-85
    • /
    • 1991
  • An experimental result for heat transfer of pulsating turbulent pipe flow was presented under the condition of fully developed dynamic regime and uniform wall heat flux. Experiments were performed at following conditions ; Inlet time-averaged Reynolds number varied from 5000 to 11000; The peak pressure fluctuation were 1.3, 2.3 and 3.5 percent of the mean pressure; Pulsating frequency ranged from 53 Hz to 320 Hz The measurements showed that the effect of pulsation on local heat transfer is greater at downstream, in which pulsating source exists, than upstream and the heat transfer rate, averaged over the pipe length, was higher or lower than in an equivalent non-pulsating flow according to the pulsating conditions. In addition, the significant change of heat transfer rate was observed in acoustically resonant conditions, when the pulsating frequency of the flow corresponded to the pipe natural frequency.

  • PDF

Three-Dimensional Flow Characteristics in the Downstream Region of a Butterfly-Type Valve Used in Air-Conditioning Systems (공기조화용 버터플라이 밸브 하류에서의 3차원 유동특성)

  • Park, Sang-Won;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.260-269
    • /
    • 2000
  • Oil-film flow visualizations and three-dimensional flow measurements have been conducted in the downstream region of a butterfly-type valve used in air-conditioning systems, with the variation of a disk open angle. The flow visualizations in the flow symmetry plane show that there are a pair of counter-rotating separation/recirculation zones as wall as two jet-like near-wall flows. These flow disturbances are strongly depends on the disk open angle. Based on the flow visualization, a qualitative flow model is suggested in the near-field and downstream region of the valve disk. For a small disk open angle, the mean velocities and turbulent intensities have relatively small values in the near-field of the valve disk, but they do not show uniform distributions even in some downstream region. With an increment of the disk open angle, mean velocity variations and turbulent intensities are greatly increased in the immediate downstream region, but uniform distributions are quickly resumed as departing from the valve disk. The mass flow rate remains nearly constant for the disk open angles less than 30 degrees, meanwhile it strongly depends on the disk open angles between 45 and 75 degrees. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 75 degrees.

A Study on Heat Transfer Characteristics for Cross Flow Heat Exchanger of Staggered Arrangement (어긋나기배열 직교류 열교환기의 열전달특성에 관한 연구)

  • Yoo, Jae-Hwan;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1016-1023
    • /
    • 2012
  • Because heat exchanger consists of many circular tubes, the analysis of local heat transfer and pressure drop at the surrounding of circular tubes, performance and calculation of size, economics play important roles in design. In this study, This study conducted experiment and analysis in order to observe convective heat transfer coefficient LMTD (logarithm mean temperature difference) and pressure losses according to water temperature and air flow rate using a cross flow heat exchanger of staggered arrangement. This heat exchanger was composed of staggered arrangement for five rows and seven columns of tube banks, and the condition of experiment and analysis are $40{\sim}65^{\circ}C$ of water temperature and $5.0{\sim}12.3m^3/s$ of air flow rate. As a result of it, since air density decreases as water temperature and flow rate increases, Reynolds number decreases with characteristics of low flow velocity but mean heat transfer coefficient increases with air flow rate increase, heat transfer performance has been improved and pressure losses decreased. And since heat transfer rate shows about 8~12% and pressure drop around 0.01~7.5% error as the analysis result, the feasibility of this study could be evaluated.

Numerical Analysis for Optimal Design of Heat Exchanger in Air Compressor for Railroad Vehicle (철도차량용 공기압축기의 열교환기 최적 설계를 위한 해석 연구)

  • Kim, Moo Sun;Chung, Jong Deok;Jang, Seongil;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.570-579
    • /
    • 2017
  • In this study, we examined the multi-stage piston-type air compressors typically used in a railroad vehicle, and the heat transfer efficiency was analyzed according to the design conditions of the heat exchanger (a compressor component module for cooling the compressed high temperature air). For the fin-tube heat exchanger used in the most air compressors, numerical analysis was performed to analyze heat transfer by defining the various rectangle tube sizes and the number of fin-per-unit area as design variables under the same flow rate of compressed air. Also, this analysis compared the temperature of the compressed air. Regarding environmental conditions for analysis, the flow rate of the external cooling air was measured and the mean value of the values was applied. And a "turbulence model" was considered in both the external flow of the cooling air and the internal flow inside the tube. From the results of analysis, it was found that the change of the aspect ratio value of the tube greatly influences the heat transfer efficiency of the compressed air, and influences if the fin density is relatively small. As a result, the optimum design specifications of the heat exchanger for air compressors were confirmed based on the analysis of the heat transfer efficiency, according to the design conditions of fin and tube by the operating temperature range of the compressed air.

Comparison of Aerodynamic Variables according to the Execution Methods of KayPENTAX Phonatory Aerodynamic System Model 6600 (KayPENTAX Phonatory Aerodynamic System Model 6600의 수행방법에 따른 공기역학 변수 비교)

  • Ko, Hyeju;Choi, Hong-Shik;Lim, Sung-Eun;Choi, Yaelin
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.93-99
    • /
    • 2015
  • In case of PAS test, the air is sometimes leaked although the mask is tightly attached to the face, which is not reliable on the measured values. Therefore, this study aimed to assist the clinical practice suggesting the test method of PAS without air leakage. In the healthy subjects with 12 males and 12 females over 19 years old, three types of tests were performed on the voicing efficiency among the protocol of PAS Model 6600. They are; first, to attach the mask tightly to the face holding the handle of PAS with the subject's two hands (Method 1); second, to attach the mask tightly to the face holding the handle of PAS with the subject's one hand and pushing the body of PAS strongly with the other hand (Method 2); and third, to attach the mask tightly to the face pushing the upper part of the mask by the tester when the subject attached the mask to his or her face holding the handle of PAS with two hands (Method 3). Upon the study analyses, the mean negative pressure, the mean phonogram, subglottic air pressure, and voicing efficiency were shown to be statistically significantly different during PAS test in males depending on the methods. (p<.05) In case of females, only the target airflow rate showed significant difference depending on the methods during PAS test. (p<.001) In conclusion, Method 2 enhanced the noise level and strength while Method 1 was likely to leak the air more compared to the other two methods in males. In case of females, Method 1 showed significant leakage of the air flow. Not to allow the air flow leakage without affecting the outcome of PAS test, it will be the most useful for the tester to push the mask to the subject's face tightly (Method 3).

Flow visualizations and analysis on characteristics of bubbly flows exhausted from a venturi-type bubble generator with an air vent (공기유입구를 가진 벤츄리 형상의 기포발생기에서 토출되는 기포 유동 특성의 가시화 측정 분석)

  • Bae, Hyunwoo;Lee, Seungmin;Song, Moonsoo;Sung, Jaeyong
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • Flow visualizations have been carried out to analyze the characteristics of bubby flows exhausted from a venturi-type bubble generator with an air vent. For various design parameters and operating conditions of the bubble generator, the images of bubbly flows was recorded using a high-speed camera and a microscope. Then the amount and size distribution of bubble was evaluated by an image processing technique. The results show that for increasing the amount of bubble, it is more effective to reduce the venturi throat than to enlarge the air vent diameter. If the water flow rate increases, the bubble generation rate increases but reaches a status of saturation, whose condition depends on Reynolds number at a given air vent diameter. The bubble size increases as the diameter of venturi throat decreases and Reynolds number increases. However, the air vent diameter is not a significant factor on bubble size.

Analytical Study on the Heat Transfer Characteristics of a Spirally Coiled Circular Fin-Tube Evaporator Operated Under Non-Frosting Conditions (무착상 조건에서 나선형 원형핀-튜브 증발기의 열전달 성능에 관한 해석적 연구)

  • Lee, Moo-Yeon;Kang, Tae-Hyung;Kim, Yong-Chan;Park, Jae-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.105-112
    • /
    • 2011
  • The objective of this study is to predict the heat-transfer performance of a spirally coiled circular fin-tube evaporator in which either R134a or R600a was used; this heat-transfer performance was predicted by varying the mass flow rate, inlet air temperature, air flow rate, and tube thickness. Mean deviation for the analytical model from the measured data was ${\pm}8.3%$. Simulation results revealed that at a given mass flow rate, the heat-transfer rate of the evaporator using R600a was higher than that usingR134a because the enthalpy of the former is higher than that of the latter at the given conditions. The heat-transfer rate of both refrigerants increased with an increase in the air flow rate and inlet air temperature but decreased with an increase in the tube thickness.

Effect of Radiative Mean Temperature on Thermal Comfort of Underfloor Air Distribution System (바닥공조시스템에서 복사온도가 열적쾌적성에 미치는 영향)

  • Chung, Jae-Dong;Hong, Hi-Ki;Yoo, Ho-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.15-20
    • /
    • 2006
  • Despite the fact that UFAD (Under Floor Air Distribution) systems have many benefits and are being applied in the field in increasing numbers, there is a strong need for an improved fundamental understanding of several key performance features of these systems. This study numerically investigates the effect of design parameters on the performance of UFAD, especially focused on thermal comfort. The design parameters considered in this study include supplied air temperature, supplied flow rate, diffuser shape, swirl, diffuser location, and floor-to-floor height. Also this study has compared UFAD with over head system, on the point of thermal comfort by evaluating PMV using radiative mean temperature, which shows how inadequate the evaluation of thermal comfort can be when radiation is neglected. Until now, the radiative temperature has been the missing link between CFD and thermal comfort, but the present study paves the way for overcoming this weakness.

  • PDF