• Title/Summary/Keyword: Mean Vector

Search Result 692, Processing Time 0.025 seconds

A channel parameter-based weighting method for performance improvement of underwater acoustic communication system using single vector sensor (단일 벡터센서의 수중음향 통신 시스템 성능 향상을 위한 채널 파라미터 기반 가중 방법)

  • Kang-Hoon, Choi;Jee Woong, Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.610-620
    • /
    • 2022
  • An acoustic vector sensor can simultaneously receive vector quantities, such as particle velocity and acceleration, as well as acoustic pressure at one location, and thus it can be used as a single input multiple output receiver in underwater acoustic communication systems. On the other hand, vector signals received by a single vector sensor have different channel characteristics due to the azimuth angle between the source and receiver and the difference in propagation angle of multipath in each component, producing different communication performances. In this paper, we propose a channel parameter-based weighting method to improve the performance of an acoustic communication system using a single vector sensor. To verify the proposed method, we used communication data collected from the experiment conducted during the KOREX-17 (Korea Reverberation Experiment). For communication demodulation, block-based time reversal technique which is robust against time-varying channels were utilized. Finally, the communication results showed that the effectiveness of the channel parameter-based weighting method for the underwater communication system using a single vector sensor was verified.

Prediction of Blast Vibration in Quarry Using Machine Learning Models (머신러닝 모델을 이용한 석산 개발 발파진동 예측)

  • Jung, Dahee;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.508-519
    • /
    • 2021
  • In this study, a model was developed to predict the peak particle velocity (PPV) that affects people and the surrounding environment during blasting. Four machine learning models using the k-nearest neighbors (kNN), classification and regression tree (CART), support vector regression (SVR), and particle swarm optimization (PSO)-SVR algorithms were developed and compared with each other to predict the PPV. Mt. Yogmang located in Changwon-si, Gyeongsangnam-do was selected as a study area, and 1048 blasting data were acquired to train the machine learning models. The blasting data consisted of hole length, burden, spacing, maximum charge per delay, powder factor, number of holes, ratio of emulsion, monitoring distance and PPV. To evaluate the performance of the trained models, the mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were used. The PSO-SVR model showed superior performance with MAE, MSE and RMSE of 0.0348, 0.0021 and 0.0458, respectively. Finally, a method was proposed to predict the degree of influence on the surrounding environment using the developed machine learning models.

A Study on Environment Parameter Compensation Method for Robust Speech Recognition (잡음에 강인한 음성 인식을 위한 환경 파라미터 보상에 관한 연구)

  • Hong, Mi-Jung;Lee, Ho-Woong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.2 s.10
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, VTS(Vector Taylor Series) algorithm, which was proposed by Moreno at Carnegie Mellon University in 1996, is analyzed and simulated. VTS is considered to be one of the robust speech recognition techniques where model parameter conversion technique is adapted. To evaluation performance of the VTS algorithm, We used CMN(Cepstral Mean Normalization) technique which is one of the well-known noise processing methods. And the recognition rate is evaluated when white gaussian and street noise are employed as background noise. Also, the simulation result is analyzed in order to be compared with the previous one which was performed by Moreno.

  • PDF

The Analysis of the Relation between Regional Industrial Diversity and Regional Business Cycle (지역의 산업다양성과 지역경기변동의 관계 분석)

  • Woo, Youngjin;Kim, Euijune
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.3
    • /
    • pp.3-19
    • /
    • 2017
  • The purpose of this paper is to analyze the impacts of regional industrial diversity on regional business cycle response to national volatility. We employed mean group and pooled mean group estimators of panel vector error-correction models in order to control unobserved heterogeneity of the port cities, such as Pusan, Ulsan and Incheon. The results show that in various industrial regions, short-term fluctuations in the unemployment rate are small compared to other regions. On the contrary, long-term volatility of manufacturing production index is low in those regions.

Ultrasonic Applications for the Enhancement of Turbulence Flow by using the PIV Measurement (PIV계측을 이용한 난류유동의 증진을 위한 초음파 적용)

  • Park, Y.H.;Choi, W.C.;Koo, J.H.;Song, M.G.;Ju, E.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.633-638
    • /
    • 2000
  • Ultrasonic applications for the enhancement of turbulence flow by using the PIV measurement were carried out according to the angle of the ultrasonic oscillator, materials of the reflector and each section when ultrasonic is reflected several times. Angles of the ultrasonic oscillator such as $30^{\circ},\;45^{\circ},\;60^{\circ},\;90^{\circ},\;120^{\circ},\;135^{\circ}$ and $150^{\circ}$ were selected, and turbulent intensities were compared at Reynolds No. 2,000 and 4,000. Materials of the reflector such as wood, acryl, iron and glass were selected, and time mean velocity vector and turbulent intensity were compared at Reynolds No. 4,000. The zone which was observed was selected from first section to fourth section when ultrasonic was reflected several times. Every data such as time mean velocity vector and time mean turbulent intensity which was obtained by PIV measurement was examined, compared and discussed at Reynolds No. 2,000 and 4,000 to know the degree of turbulence enhancement in each case.

  • PDF

Efficient Prediction in the Semi-parametric Non-linear Mixed effect Model

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.225-234
    • /
    • 1999
  • We consider the following semi-parametric non-linear mixed effect regression model : y\ulcorner=f($\chi$\ulcorner;$\beta$)+$\sigma$$\mu$($\chi$\ulcorner)+$\sigma$$\varepsilon$\ulcorner,i=1,…,n,y*=f($\chi$;$\beta$)+$\sigma$$\mu$($\chi$) where y'=(y\ulcorner,…,y\ulcorner) is a vector of n observations, y* is an unobserved new random variable of interest, f($\chi$;$\beta$) represents fixed effect of known functional form containing unknown parameter vector $\beta$\ulcorner=($\beta$$_1$,…,$\beta$\ulcorner), $\mu$($\chi$) is a random function of mean zero and the known covariance function r(.,.), $\varepsilon$'=($\varepsilon$$_1$,…,$\varepsilon$\ulcorner) is the set of uncorrelated measurement errors with zero mean and unit variance and $\sigma$ is an unknown dispersion(scale) parameter. On the basis of finite-sample, small-dispersion asymptotic framework, we derive an absolute lower bound for the asymptotic mean squared errors of prediction(AMSEP) of the regular-consistent non-linear predictors of the new random variable of interest y*. Then we construct an optimal predictor of y* which attains the lower bound irrespective of types of distributions of random effect $\mu$(.) and measurement errors $\varepsilon$.

  • PDF

Hourly Steel Industry Energy Consumption Prediction Using Machine Learning Algorithms

  • Sathishkumar, VE;Lee, Myeong-Bae;Lim, Jong-Hyun;Shin, Chang-Sun;Park, Chang-Woo;Cho, Yong Yun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.585-588
    • /
    • 2019
  • Predictions of Energy Consumption for Industries gain an important place in energy management and control system, as there are dynamic and seasonal changes in the demand and supply of energy. This paper presents and discusses the predictive models for energy consumption of the steel industry. Data used includes lagging and leading current reactive power, lagging and leading current power factor, carbon dioxide (tCO2) emission and load type. In the test set, four statistical models are trained and evaluated: (a) Linear regression (LR), (b) Support Vector Machine with radial kernel (SVM RBF), (c) Gradient Boosting Machine (GBM), (d) random forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used to measure the prediction efficiency of regression designs. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.

Fast Stitching Algorithm by using Feature Tracking (특징점 추적을 통한 다수 영상의 고속 스티칭 기법)

  • Park, Siyoung;Kim, Jongho;Yoo, Jisang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.728-737
    • /
    • 2015
  • Stitching algorithm obtain a descriptor of the feature points extracted from multiple images, and create a single image through the matching process between the each of the feature points. In this paper, a feature extraction and matching techniques for the creation of a high-speed panorama using video input is proposed. Features from Accelerated Segment Test(FAST) is used for the feature extraction at high speed. A new feature point matching process, different from the conventional method is proposed. In the matching process, by tracking region containing the feature point through the Mean shift vector required for matching is obtained. Obtained vector is used to match the extracted feature points. In order to remove the outlier, the RANdom Sample Consensus(RANSAC) method is used. By obtaining a homography transformation matrix of the two input images, a single panoramic image is generated. Through experimental results, we show that the proposed algorithm improve of speed panoramic image generation compared to than the existing method.

L1-norm Regularization for State Vector Adaptation of Subspace Gaussian Mixture Model (L1-norm regularization을 통한 SGMM의 state vector 적응)

  • Goo, Jahyun;Kim, Younggwan;Kim, Hoirin
    • Phonetics and Speech Sciences
    • /
    • v.7 no.3
    • /
    • pp.131-138
    • /
    • 2015
  • In this paper, we propose L1-norm regularization for state vector adaptation of subspace Gaussian mixture model (SGMM). When you design a speaker adaptation system with GMM-HMM acoustic model, MAP is the most typical technique to be considered. However, in MAP adaptation procedure, large number of parameters should be updated simultaneously. We can adopt sparse adaptation such as L1-norm regularization or sparse MAP to cope with that, but the performance of sparse adaptation is not good as MAP adaptation. However, SGMM does not suffer a lot from sparse adaptation as GMM-HMM because each Gaussian mean vector in SGMM is defined as a weighted sum of basis vectors, which is much robust to the fluctuation of parameters. Since there are only a few adaptation techniques appropriate for SGMM, our proposed method could be powerful especially when the number of adaptation data is limited. Experimental results show that error reduction rate of the proposed method is better than the result of MAP adaptation of SGMM, even with small adaptation data.

An Experimental Study on the Flew Characteristics in Dividing Rectangular Duet by using a PIV Technique (PIV기법을 이용한 분기 사각덕트네의 유동특성에 관한 실험적 연구)

  • 이행남;박길문;이덕구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1195-1202
    • /
    • 2001
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean x-y stress distributions, mean vorticity and total pressure distributions are Obtained for three different Reynolds numbers(578, 620, 688) Using PIV measurements and CFD analysis. Also, three different rates of discharge Q=26.11 l/min, Q=28.11 $\ell$/min, Q=31.17 $\ell$/min) were selected foy experimental conditions. The results of this study would be useful to the engineer in designing the flow systems for heating, ventilation, air conditioning and wastewater purification plants.

  • PDF