• 제목/요약/키워드: Mean Squared Error, MSE

검색결과 174건 처리시간 0.019초

Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies

  • Asgari, Masoud;Babaee, Alireza;Jamshidi, Mohammadamin
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.427-438
    • /
    • 2018
  • In this paper, the single and multi-objective optimization of thin-walled conical tubes with different types of indentations under axial impact has been investigated using surrogate models called metamodels. The geometry of tapered thin-walled tubes has been studied in order to achieve maximum specific energy absorption (SEA) and minimum peak crushing force (PCF). The height, radius, thickness, tapered angle of the tube, and the radius of indentation have been considered as design variables. Based on the design of experiments (DOE) method, the generated sample points are computed using the explicit finite element code. Different surrogate models including Kriging, Feed Forward Neural Network (FNN), Radial Basis Neural Network (RNN), and Response Surface Modelling (RSM) comprised to evaluate the appropriation of such models. The comparison study between surrogate models and the exploration of indentation shapes have been provided. The obtained results show that the RNN method has the minimum mean squared error (MSE) in training points compared to the other methods. Meanwhile, optimization based on surrogate models with lower values of MSE does not provide optimum results. The RNN method demonstrates a lower crashworthiness performance (with a lower value of 125.7% for SEA and a higher value of 56.8% for PCF) in comparison to RSM with an error order of $10^{-3}$. The SEA values can be increased by 17.6% and PCF values can be decreased by 24.63% by different types of indentation. In a specific geometry, higher SEA and lower PCF require triangular and circular shapes of indentation, respectively.

충격성 잡음이 있는 수중 통신 채널의 적응 등화를 위한 확률밀도함수 정합 알고리듬 (Adaptive Equalization using PDP Matching Algorithms for Underwater Communication Channels with Impulsive Noise)

  • 김남용
    • 한국통신학회논문지
    • /
    • 제36권10B호
    • /
    • pp.1210-1215
    • /
    • 2011
  • 이 논문에서는 다중경로 특성과 충격성 잡음이 있는 수중 통신 채널에 대해 확률밀도함수 정합 방법에 근거한 적응등화 알고리듬을 소개하고 결정 궤환을 적용한 확률밀도함수 정함 알고리듬을 제안하였다. 기존의 제곱평균오차 기반의 최소평균제곱 (LMS) 알고리듬은 수중통신 채널의 충격성 잡음과 다중경로 채널을 보상하지 못하는 현상을 보였다. 충격성 잡음에 효과적인 면역성을 보인 선형 확률밀도함수 정합 알고리듬도 열악한 다중경로 환경에서는 만족스럽지 못한 성능을 나타났다. 한편, 제안한 결정 궤환 구조의 비선형 확률밀도함수 정합 알고리듬은 수중 통신 채널의 다중경로 특성과 충격성 잡음에 대해 탁월한 강인성을 가짐을 모의실험을 통해 입증되었다.

중요도 분석 기법을 활용한 압축파 속도와 간극률 관계 연구 (Study for Relationship between Compressional Wave Velocity and Porosity based on Error Norm Method)

  • 윤형구
    • 한국지반공학회논문집
    • /
    • 제40권4호
    • /
    • pp.127-135
    • /
    • 2024
  • 해당 논문의 목적은 deep neural network(DNN) 알고리즘을 이용하여 불포화토 지반의 압축파 속도와 간극률 간의 관계를 도출하는 것이다. 입력 인자는 error norm 방법으로 각각의 값이 간극률에 미치는 영향을 조사하였으며, 결론적으로 압축파 속도가 간극률 산정에 제일 큰 영향을 주는 것으로 나타났다. 압축파 속도와 간극률은 현장 및 실내 실험을 통해 도출하였으며, 총 266개의 수치 데이터를 이용하였다. DNN 적용 결과는 매 횟수마다 계산된 MSE 손실로 표현하였으며, 초반의 계산 횟수 단계에서 거의 0에 수렴하는 결과를 도출하였다. 예측된 간극률은 train과 validation으로 구분하여 분석하였으며, 실제 데이터와 비교하였을 경우 결정계수는 각각 0.97과 0.98로 나타나 높은 신뢰성을 보여준다. 해당 연구에서는 error norm 분석을 통해 민감도가 작은 인자는 배제하고 영향성이 높은 인자를 통해 종속 변수를 예측하는 방법론을 제시하였다.

복합패널 데이터에 기초한 최소제곱 패널회귀추정량의 설계기반 성질 (Design-Based Properties of Least Square Estimators of Panel Regression Coefficients Based on Complex Panel Data)

  • 김규성
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.515-525
    • /
    • 2010
  • 본 논문에서는 패널회귀모형에서 회귀계수의 일반최소제곱추정량과 가중최소제곱추정량의 설계기반 성질을 살펴보았다. 복합표본이 주어진 경우에 두 추정량의 설계편향을 구하여 가중최소제곱추정량의 설계편향의 크기가 더 작음을 보였다. 또한 한국복지패널 데이터를 대상으로 모의실험을 실시하여 다음의 결과를 얻었다. 첫째, 일반최소제곱추정치의 상대편향이 가중최소제곱추정치의 상대편향보다 약 2배 정도 크게 나타났고 일반최소제곱추정치의 편향비가 더 크게 나타났다. 그리고 표본수가 증가하면 일반최소제곱 추정치의 상대편향은 완만하게 줄어든 반면 가중최소제곱추정치의 상대편향은 급속도로 줄어들었다. 둘째, 표본수가 증가하면 일반초소제곱추정치와 가중최소제곱추정치의 분산과 평균제곱오차는 모두 줄어들였다. 그러나 평균제곱오차에서 차지하는 편향제곱의 비율은 표본수가 증가할 때 일반최소제곱추정치에서는 증가하는 반면 가중최소제곱추정치에서는 감소하는 경향이 나타났다. 마지막으로 거의 모든 경우에 일반최소제곱추정치의 분산이 가중최소제곱추정치의 분산보다 작게 나타났다. 그리고 많은 경우에 일반최소제곱추정치의 평균제곱오차가 가중최소제곱추정치의 평균제곱오차보다 작게 나타났다. 그러나 표본수가 증가할수록 일반최소제곱추정치의 평균제곱오차가 가중최소제곱추정치의 평균제곱오차보다 커지는 경우가 늘어났다.

고객의 지연보고를 고려한 보증수리내역자료에서의 고장률 추정 (Estimating Failure Rate Using Warranty Claim Data with Delayed Report of Customers)

  • 박종훈;김영훈;백장현;이창훈
    • 산업공학
    • /
    • 제23권2호
    • /
    • pp.176-181
    • /
    • 2010
  • Warranty claim data analysis is a useful tool for the manufacturer because it contains many useful informations regarding reliability of the product in the real-world environments. Because of the nature of uncertainty and the incompleteness of data, some bias patterns are observed on warranty claim rate known as 'spikes'. Two types of spikes are considered. One is due to manufacturing-related failures. The other is caused by customer's behavior. This paper proposes a model by considering two types of spikes. Warranty claim data is analyzed with the proposed model. To represent spikes observed on the early warranty period, we classify failures into manufacturing-related failures and usage-related failures. Uniform distribution is assumed for the time delayed to diagnose and report by customers. By reducing maximum value of the delayed time by customers, the proposed model characterizes customer's rush in the vicinity of the warranty expiration limit. Experimental results by using the real warranty claim data show that the proposed model is better than the existing one in respect to MSE(Mean Squared Error). Moreover it is expected to estimate the failure rate more realistically with proposed model because it considers the delayed time to diagnose and report by customers.

비선형 공정을 위한 최적 다항식 뉴럴네트워크에 관한 연구 (A Study on Optimal Polynomial Neural Network for Nonlinear Process)

  • 김완수;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.149-151
    • /
    • 2005
  • In this paper, we propose the Optimal Polynomial Neural Networks(PNN) for nonlinear process. The PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and modified quadratic, and is connected as various kinds of multi-variable inputs. The conventional PNN depends on experience of a designer that select No. of input variable, input variable and polynomial type. Therefore it is very difficult a organizing of optimized network. The proposed algorithm identified and selected No. of input variable, input variable and polynomial type by using Genetic Algorithms(GAs). In the sequel the proposed model shows not only superior results to the existing models, but also pliability in organizing of optimal network. Medical Imaging System(MIS) data is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF

수요예측 모형의 비교분석에 관한 사례연구 (A comparative analysis of the Demand Forecasting Models : A case study)

  • 정상윤;황계연;김용진;김진
    • 산업경영시스템학회지
    • /
    • 제17권31호
    • /
    • pp.1-10
    • /
    • 1994
  • The purpose of this study is to search for the most effective forecasting model for condenser with independent demand among the quantitative methods such as Brown's exponential smoothing method, Box-Jenkins method, and multiple regression analysis method. The criterion for the comparison of the above models is mean squared error(MSE). The fitting results of these three methods are as follows. 1) Brown's exponential smoothing method is the simplest one, which means the method is easy to understand compared to others. But the precision is inferior to other ones. 2) Box-Jenkins method requires much historic data and takes time to get to the final model, although the precision is superior to that of Brown's exponential smoothing method. 3) Regression method explains the correlation between parts with similiar demand pattern, and the precision is the best out of three methods. Therefore, it is suggested that the multiple regression method is fairly good in precision for forecasting our item and that the method is easily applicable to practice.

  • PDF

변수선택 편향이 없는 회귀나무를 만들기 위한 알고리즘 (Regression Trees with. Unbiased Variable Selection)

  • 김진흠;김민호
    • 응용통계연구
    • /
    • 제17권3호
    • /
    • pp.459-473
    • /
    • 2004
  • 본 논문에서는 Breiman 등(1984)의 전체탐색법이 갖고 있는 변수선택 편향을 극복할 수 있는 알고리즘을 제안하였다. 제안한 알고리즘은 노드의 분리 변수를 선택하는 단계와 그 선택된 변수에 대해서만 이진분리를 위한 분리점을 찾는 단계로 나뉘어져 있다. 예측변수가 연속형 일 때는 스피어만의 순위상관계수에 의한 검정을 수행하고, 범주형일 때는 크루스칼-왈리스의 통계량에 의한 검정을 수행하여 통계적으로 가장 유의한 변수를 분리변수로 선택하였고 Breiman 등(1984)의 전체탐색법을 그 변수에만 적용하여 노드의 분리기준을 정하였다 모의실험 연구를 통해 Breiman등(19히)의 CART와 제안한 알고리즘을 변수선택 편의, 변수선택력파 평균제곱오차 측면에서 서로 비교하였다. 아울러 두 알고리즘을 실제 자료에 적용하여 효율을 서로 비교하였다.

AR(1) 모형의 모수에 대한 L-추정법 (L-Estimation for the Parameter of the AR(l) Model)

  • 한상문;정병철
    • 응용통계연구
    • /
    • 제18권1호
    • /
    • pp.43-56
    • /
    • 2005
  • 본 연구에서는 AR(1) 과정을 따르는 시계열 모형에서 가산적 이상치(Additive Out-lier)가 존재하는 경우, 1차 자기상관계수에 대한 로버스트 추정방법으로 Rupport 와 Carroll (1980)에 의해 회귀모형에서 제안된 L-추정법 형태의 절사최소제곱추정 (PE 추정)방법을 제안하였다. 더불어 X축의 이상치에 대한 비중강하(down-weight)의 방법으로 Mallows의 가중함수를 고려한 유계영향 절사최소제곱 (bounded influence PE, BIPE)추정량을 제안하였으며 모의 실험을 통하여 각 추정량의 효율성을 비교하였다. 모의실험 결과, 다양한 자료의 오염률상에서 일반화 LAD추정치를 예비 추정치로 고려한 BIPE(LAD)-추정량의 효율이 좋은 것으로 나타났다.

Recursive Least Squares Run-to-Run Control with Time-Varying Metrology Delays

  • Fan, Shu-Kai;Chang, Yuan-Jung
    • Industrial Engineering and Management Systems
    • /
    • 제9권3호
    • /
    • pp.262-274
    • /
    • 2010
  • This article investigates how to adaptively predict the time-varying metrology delay that could realistically occur in the semiconductor manufacturing practice. Metrology delays pose a great challenge for the existing run-to-run (R2R) controllers, driving the process output significantly away from target if not adequately predicted. First, the expected asymptotic double exponentially weighted moving average (DEWMA) control output, by using the EWMA and recursive least squares (RLS) prediction methods, is derived. It has been found that the relationships between the expected control output and target in both estimation methods are parallel, and six cases are addressed. Within the context of time-varying metrology delay, this paper presents a modified recursive least squares-linear trend (RLS-LT) controller, in combination with runs test. Simulated single input-single output (SISO) R2R processes subject to various time-varying metrology delay scenarios are used as a testbed to evaluate the proposed algorithms. The simulation results indicate that the modified RLS-LT controller can yield the process output more accurately on target with smaller mean squared error (MSE) than the original RLSLT controller that only deals with constant metrology delays.