• Title/Summary/Keyword: Mean Flow Velocity

검색결과 1,030건 처리시간 0.024초

전기치료가 긴장형 두통환자의 뇌 혈류 속도에 미치는 영향 (Effects of Electrotherapy on Blood Velocity of Cranial Artery in Tension-Type Headache subjects)

  • 박래준;김진상;이인학;박장환;한동욱
    • The Journal of Korean Physical Therapy
    • /
    • 제12권3호
    • /
    • pp.349-359
    • /
    • 2000
  • The aim of study was to evaluated the possible role of cranial artery velocity in headache pathogenesis. The present study was studied of five headache(F=5. Mean $age=29.80\pm6.76yrs$) were compared to 4 controls(F=4, Mean $age=29.00\pm5.48yrs$). Transcranial doppler ultrasonography(TCD) is a new non-invasive and easily applicable method to evaluate flow velocities of the intracranial and extracranial cerebral arteries. TCD was performed with standard method to measure the mean Flow Velocity(MFV) of the middle and posterior cerebral arteries, the internal carotid artery, the vertebral and the basilar artery. We reviewed the whole TCD results performed at Taejon Veterans Hospital from October. 11. 2000 to November. 10. 2000. Mean flow velocities in headaches and controls at their 6 decades are $28.00\pm3.61cm/sec$ and $41.25pm1.71cm/sec$ in lent PCA (P<0.01), $50,000\pm23.07cm/sec$ and $82.75\pm15.59cm/sec$ in right MCA(P<0.05), $26.20\pm4.82cm/sec$ and $45.50\pm4.51cm/sec$ in fight PCA(P<0.01). $26.60\pm4.56cm/sec$ and $38.25\pm4.92cm/sec$ in right VAC(P<0.01). After treatment for 2 weeks, mean of velocity on pre treatment and post treatment and post treatment are $28.00\pm3.61cm/sec$ and $38.20\pm5.81cm/sec$ in left PCA (P<0.05), $26.20\pm4.827cm/sec$ and $39.20\pm5.54cm/sec$ in right PCA(P<0.05), $40.60\pm9.18cm/sec$ in right VA(P<0.01). It is concluded that Electrical Therapy for two weeks was effected to promote Mean Flow of Velocity in cranial artery. Mean of velocity in cranial artery with headaches observed in this study was lower than controls, but MFV was promote after treatment for 2 weeks.

  • PDF

정상유동 장치에서 유동 특성 평가 방법에 대한 연구(3) - 유속분포(1) (Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(3) - Velocity Profile(1))

  • 박찬준;성재용;엄인용
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.169-182
    • /
    • 2016
  • This paper is the third investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous works, several assumptions used in the steady flow bench were examined and the flow characteristics were estimated both by the conventional impulse swirl meter and a particle image velocimetry at 1.75B position. From these works, it was concluded that the assumption of the solid rotation might cause serious problems and both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75B plane. Therefore, the understanding of the detail velocity profiles is very important to keep discussing the issues about the steady flow evaluation method. For this purpose, the planar velocity profiles were measure at 1.75B position by particle image velocimetry and the characteristics were examined according to the valve angles and lifts. The results show that the planar velocity profiles of 11, 16, $21^{\circ}$ valve angle heads according to the lift are similar to each other, however, that of $26^{\circ}$ angle is an exceptional case in the all aspects. In addition, the swirl behaviors are not apparent up to 6~8 mm lift under the $21^{\circ}$ angle and somewhat arranged motions are observed over the whole plane near the highest lift. At this point, the narrower the angle, the lower the lift at which the swirl motions become clear. On the other hands, when the angle is $26^{\circ}$, the center of swirl is always farthest from the cylinder center and only the indistinct swirl is observed even if at the highest lift. Also, all the swirl centers are quite apart from the cylinder center so that the effect of eccentricity may not be negligible at 1.75B regardless the valve angle. Related to the tangential velocity along with the radial direction, the bands of the velocity distribution are very wide and the mean velocities of cylinder center basis are lower than the velocity which is assumed in the ISM evaluation. Lastly, the mean tangential velocity profiles of swirl center basis are sometimes higher than that of ISM-assumed up to 0.6 non-dimensional distance less than 6mm lift, however, as the lift increases the profiles are different according to the angles and profile $11^{\circ}$ is the most closed to the ideal profile. Consequently, the real velocity profile is far from the assumption of ISM evaluation.

유정란 배아 혈액유동의 in vivo 계측 (In Vivo Measurements of Blood Flow in a Chicken Embryo Using Micro PIV Technique)

  • 여창섭;한규연;이상준
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.314-319
    • /
    • 2006
  • To analyze in-vivo blood flow characteristics in a chicken embryo, in-vivo experiment was carried out using micro-PIV technique. Because endothelial cells in blood vessels are subject to shear stress of blood flow, it is important to get velocity field information of the placental blood flow. Instantaneous velocity fields of an extraembryonic blood vessel using a high-speed camera and intravital microscope. The flow images of RBCs were obtained with a spatial resolution of $20\times20{\mu}m$ in the whole blood vessels. The mean velocity field data confirm that the blood flow does show non-Newtonian fluid characteristic. The blood in a branched vessel merged smoothly without any flow separation into the main blood vessel with the presence of a slight bump. This in-vivo micro-PIV measurement technique can be used as a powerful tool in various blood flow researches.

대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구 (Effect of cylinder aspect ratio on wake structure behind a finite circular cylinder located in an atmospheric boundary layer)

  • 박철우;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.247-252
    • /
    • 2001
  • The flow around free end of a finite circular cylinder(FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wake structures behind a 2-D cylinder and a finite cylinder located in a uniform flow were also measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency is decreased and the vortex formation length is increased compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, in the region near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly established. In the wake center region, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit, compared to that of uniform flow.

  • PDF

국소 벽면 진동에 의한 난류경계층 유동 변화 (Modification of Turbulent Boundary Layer Flow by Local Wall Vibration)

  • 김철규;전우평;박진일;김동주;최해천
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1255-1263
    • /
    • 2000
  • In this study, the modification of turbulent boundary layer flow by local wall vibration is investigated. The wall is locally vibrated using a wall deformation actuator, which moves up and down at the frequencies of 100Hz and 50Hz. Simultaneous measurements of the streamwise velocities in the spanwise direction are performed at several wall-normal and streamwise locations using an in-house multi-channel hot wire anemometer and a spanwise hot-wire-probe rake. The mean velocity is reduced in most places due to the wall vibration and its reduced amount becomes small as flow goes downstream. Interestingly, the mean velocity is found to increase very near the wall and near the actuator. This is due to the motion induced by the streamwise vortices which are generated by the downward motion of the actuator. In case of the streamwise velocity fluctuations, their magnitude increases as compared to the unperturbed turbulent boundary layer, and the increased amount becomes small as the flow moves downstream. The modified flow field at the forcing frequency of 50Hz is not much different from that of 100Hz, except the reduced amount of modification.

자기공명유속계를 이용한 난류 유동장 가시화 (Validation of Magnetic Resonance Velocimetry by Turbulent Pipe Flow)

  • 이지수;송시몬;조지현
    • 한국가시화정보학회지
    • /
    • 제12권1호
    • /
    • pp.35-42
    • /
    • 2014
  • Magnetic resonance velocimetry (MRV) is a versatile flow visualization technique using magnetic resonance imaging machine developed for the medical purpose. Recently, MRV is often utilized to analyze engineering flows due to its superior features of MRV such as capabilities of measuring flows with complicated, opaque flow geometry unlike optical techniques, 3-dimensional volumetric velocity vectors within a few hours, and etc. The purpose of this study was to validate the MRV data and evaluate the accuracy of the mean velocity profiles that we acquired for a turbulent flow in a circular pipe using a MR machine installed in Korea Basic Science Institute, Ochang, Korea. In addition, we briefly describe a procedure of parameter optimization for the operation of MRV. The results indicate that the MRV measurements provided well resolved mean velocity fields with a quite reasonable accuracy according to the inner and outer layer scaling laws of the turbulent pipe flows.

Experimental Study on the Unsteady Flow Characteristics for the Counter-Rotating Axial Flow Fan

  • Cho, L.S.;Lee, S.W.;Cho, J.S.;Kang, J.S.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.790-798
    • /
    • 2008
  • Counter-rotating axial flow fan(CRF) consists of two counter-rotating rotors without stator blades. CRF shows the complex flow characteristics of the three-dimensional, viscous, and unsteady flow fields. For the understanding of the entire core flow in CRF, it is necessary to investigate the three-dimensional unsteady flow field between the rotors. This information is also essential to improve the aerodynamic characteristics and to reduce the aerodynamic noise level and vibration characteristics of the CRF. In this paper, experimental study on the three-dimensional unsteady flow of the CRF is performed at the design point(operating point). Flow fields in the CRF are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. The phase-locked averaged hot-wire technique utilizes the inclined hot-wire, which rotates successively with 120 degree increments about its own axis. Three-dimensional unsteady flow characteristics such as tip vortex, secondary flow and tip leakage flow in the CRF are shown in the form of the axial, radial and tangential velocity vector plot and velocity contour. The phase-locked averaged velocity profiles of the CRF are analyzed by means of the stationary unsteady measurement technique. At the mean radius of the front rotor inlet and the outlet, the phase-locked averaged velocity profiles show more the periodical flow characteristics than those of the hub region. At the tip region of the CRF, the axial velocity is decreased due to the boundary layer effect of the fan casing and the tip vortex flow. The radial and the tangential velocity profiles show the most unstable and unsteady flow characteristics compared with other position of rotors. But, the phase-locked averaged velocity profiles of the downstream of the rear rotor show the aperiodic flow pattern due to the mixture of the front rotor wake period and the rear rotor rotational period.

  • PDF

수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구 (Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction)

  • 서동민;오상우;변성훈
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

마이크로 채널 내부 전기삼투 유동에 대한 PIV유동 해석 (Micro-PIV Analysis of Electro-osmotic Flow inside Microchannels)

  • 김양민;이상준
    • 한국가시화정보학회지
    • /
    • 제1권2호
    • /
    • pp.47-51
    • /
    • 2003
  • Microfluidic chips such as lab-on-a-chip (LOC) include micro-channels for sample delivery, mixing, reaction, and separation. Pressure driven flow or electro-osmotic flow (EOF) has been usually employed to deliver bio-samples. Having some advantages of easy control, the flow characteristics of EOF in microchannels should be fully understood to effectively control the electro-osmotic pump for bio-sam-pie delivery. In this study, a micro PIV system with an epifluorescence inverted microscope and a cooled CCD was used to measure velocity fields of EOF in a glass microchannel and a PDMS microchannel. The EOF velocity fields were changed with respect to electric charge of seeding particles and microchannel materials used. The EOF has nearly uniform velocity distribution inside the microchannel when pressure gradient effect is negligible. The mean streamwise velocity is nearly proportional to the applied electric field. Glass microchannels give better repeatability in PIV results, compared with PDMS microchannels which are easy to fabricate and more suitable for PIV experiments.

  • PDF

사각덕트내 직각엘보우를 지난 유체유동에 관한 연구 (Study on Fluid Flow in Rectangular Duct past $90^{\circ}$ Mitered Elbow)

  • 윤영환;배택희;박원구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.670-678
    • /
    • 2002
  • Fluid flow in a rectangular duct with $90^{\circ}$ mitered elbow is measured by 5W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between measured and computed velocity profiles in the duct. Reynolds numbers for the comparison are 1,608 and 11,751 based on mean velocity and hydraulic diameter of the duct. First, the fluid flow of Reynolds number equal to 1,608 is predicted by assumptions of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300~3,000, the computation by turbulent model is closed to the experimental data than that by laminar model. Second, the computation for Reynolds number of 11,751 by turbulent model also predicted the experimental data satisfactorily.