• Title/Summary/Keyword: Mean Distance

Search Result 1,693, Processing Time 0.024 seconds

Selection of Transition Point through Calculation of Cumulative Toxic Load -Focused on Incheon Area- (누적독성부하 산정을 통한 주민소산 전환시점 선정에 관한 연구 -인천지역을 중심으로-)

  • Lee, Eun Ji;Han, Man Hyeong;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.15-24
    • /
    • 2020
  • With the development of the chemical industry, the chemical accident is increasing every year, thereby increasing the risk of accidents caused by chemicals. The Ministry of Environment provides the criteria for determining shelter-in-place or outdoor evacuation by material, duration of accident, and distance from the toxic substance leak. However, it is hard to say that the criteria for determining the transition point are not clear. Transition point mean the time that evacuation method is switched from shelter-in-place to outdoor evacuation. So, the purpose of this study was to calculate appropriate transition point by comparing the cumulative toxic load. Namdong-gu in Incheon Metropolitan City was finally selected as the target area, considering the current status of the population of Incheon Metropolitan City in 2016 and the statistical survey of chemicals in 2016. The target materials were HCl, HF, and NH3. Modeling was simulated by ALOHA and performed assuming that the entire amount would be leaked for 10 min. Residents' evacuation scenarios were assumed to be shelter-in-place, immediate outdoor evacuation, and outdoor evacuation at an appropriate time after shelter-in-place. Based on the above method, the appropriate transition point from residents located in A(800 m away), B(1,200 m away), C(1,400 m away) and D(2,200 m away) was identified. In HCl, appropriate transition point was after 15 min, after 16 min, after 17 min, after 20 min in order by A, B, C and D. In HF, appropriate transition point was before 1 min or after 16 min, before 4 min or after 19 min, before 5 min or after 20 min, before 14 min or after 26 min in order by A, B, C and D. In NH3, appropriate transition point at A was before 4 min or after 16. Others are not in chemical cloud. This study confirmed the transition point to minimize the cumulative toxic load can be obtained by quantitative method. Through this, it might be possible to select evacuation method quantitatively that cumulative toxic load are minimal. In addition, if the shelter-in-place is maintained without transition to outdoor evacuation, the cumulative toxic load will increase more than outdoor evacuation. Therefore, it was confirmed that actions to reduce the concentration of chemicals in the room were necessary, such as conducting ventilation after the chemical cloud passed through the site.

Design and Evaluation of Pulsed Electromagnetic Field Stimulation Parameter Variable System for Cell and Animal Models (세포 및 동물모델용 펄스형 전자기장 자극 파라미터 가변장치 설계 및 평가)

  • Lee, Jawoo;Park, Changsoon;Kim, Junyoung;Lee, Yongheum
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • An electromagnetic generator with variable stimulation parameters is required to conduct basic research on magnetic flux density and frequency for pulsed electromagnetic fields (PEMFs). In this study, we design an electromagnetic generator that can conduct basic research by providing parameters optimized for cell and animal experimental conditions through adjustable stimulation parameters. The magnetic core was selected as a solenoid capable of uniform and stable electromagnetic stimulation. The solenoid was designed in consideration of the experimental mouse and cell culture dish insertion. A voltage and current adjustable power supply for variable magnetic flux density was designed. The system was designed to be adjustable in frequency and pulse width and to enable 3-channel output. The reliability of the system and solenoid was evaluated through magnetic flux density, frequency, and pulse width measurements. The measured magnetic flux density was expressed as an image and qualitatively observed. Based on the acquired image, the stimulation area according to the magnetic flux density decrease rate was extracted. The PEMF frequency and pulse width error rates were presented as mean ± SD, and were confirmed to be 0.0928 ± 0.0934% and 0.529 ± 0.527%, respectively. The magnetic flux density decreased as the distance from the center of the solenoid increased, and decreased sharply from 60 mm or more. The length of the magnetic stimulation area according to the degree of magnetic flux density decrease was obtained through the magnetic flux density image. A PEMF generator and stimulation parameter control system suitable for cell and animal models were designed, and system reliability was evaluated.

Geant4 Code Based Simulation of 6 MV Photon Beam for Analysis of Dose Distribution (Geant4 코드를 이용한 선형가속기 6 MV 광자선의 선량분포에 관한 연구)

  • Lee, Jun-Seong;Kim, Yang-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.449-455
    • /
    • 2022
  • This study is to present a Geant4 code for the simulation of the absorbed dose distribution given by a medical linac for 6 MV photon beam. The dose distribution was verified by comparison with calculated beam data and beam data measured in water phantom. They were performed for percentage depth dose(PDD) and beam profile of cross-plane for two field sizes of 10 × 10 and 15 × 15 cm2. Deviations of a percentage and distance were obtained. In energy spectrum, the mean energy was 1.69 MeV. Results were in agreement with PDD and beam profile of the phantom with a tolerance limit. The differences in the central beam axis data 𝜹1 for PDD had been less than 2% and in the build up region, these differences increased up to 4.40% for 10 cm square field. The maximum differences of 𝜹2 for beam profile were calculated with a result of 4.35% and 5.32% for 10 cm, 15 cm square fields, respectively. It can be observed that the difference was below 4% in 𝜹3 and 𝜹4. For two field sizes of 𝜹50-90 and RW50, the results agreed to within 2 mm. The results of the t-test showed that no statistically significant differences were found between the data for PDD of 𝜹1, p>0.05. A significant difference on PDD was observed for field sizes of 10 × 10 cm2, p=0.041. No significant differences were found in the beam profile of 𝜹3, 𝜹4, RW50, and 𝜹50-90. Significant differences on beam profile of 𝜹2 were observed for field sizes of 10 × 10 cm2, p=0.025 and for 15 × 15 cm2, p=0.037. This work described the development and reproducibility of Geant4 code for verification of dose distribution.

Effect of Vertically Rising Pressure Providing Spinal Canal Segment Motion on Symptom Relief in Patients with Parkinson's Disease (척추관 분절운동을 제공하는 수직 상승 압력이 파킨슨병 환자의 증상 완화에 미치는 영향)

  • Do-Hyun, Ahn;Hyeun-Woo, Choi;Kyung-Mi, Jung;Na-Young, Kim;Jong-Min, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.787-797
    • /
    • 2022
  • The purpose of this study was to confirm the reduction of pain and symptom relief of Parkinson's disease by vertically stimulating the spine through the application of a mechanical bed capable of thermal and massage stimulation. For this purpose, after confirming the segmental motion of the spine due to the use of a medical combination stimulation bed for Parkinson's disease patients, VAS, ODI, gait ability, and spiral drawing tests were performed, and the relationship between the variables was identified. In the 10-day visual analog scale and evaluation of low back pain dysfunction, the average trend of decreasing after bed use was confirmed. For walking ability, a decrease in the moving time and an increase in the moving distance were observed. In the spiral drawing test, the mean test time after using bed was significantly lower than before. As a result, it suggested the possibility of using it as an auxiliary method for recovery and pain relief of Parkinson's disease patients due to spinal segmental movement with mechanical heating and massage. However, this study is a preliminary study, and there is a small number of subjects, so additional research is needed that considers the number and condition of future subjects in detail.

Evaluations of Thermal Fog for Domestic Mosquito Vector Control (국내 주요 모기에 대한 가열연막의 방제효과)

  • Jeong, Su-Yule;Min, Young-Hwan;Jung, Sun Ho;Kang, Gi-Seok;Jeong, Hyo-Bin;Lee, Dong-Kyu
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.267-274
    • /
    • 2022
  • Portable and vehicle thermal fogs were tested using etofenprox, bifenthrin, and deltamethrin diluted with diesel oil, kerosene, and water against domestic vector mosquitoes, Aedes albopictus, Anopheles sinensis s.l., Culex pipiens, and Culex tritaeniorhynchus. The female mosquitoes were confined in small cages suspended on poles at progressively greater distances from the fog release point at an open field. The average mortality rates of four vector mosquitoes to the three insecticides were 52.0% and 64.0% at a portable thermal fogs diluted with diesel oil and water within a 10 m distance, respectively. A vehicle thermal fog had a mean mortality of 34.8% of the females to the insecticides diluted with diesel oil within 50 m. The mortality rates were not significantly different among all the tested distances. At a dilution solvent test, the mortality of the females to the insecticides diluted with kerosene was 1.9 times higher than that of diesel oil.

The Study of Appropriate X-ray Tube Angle for the Anterior-posterior Chest Radiography Using S-align Function (S-align 기능을 이용한 흉부 전·후 방향 검사 시 적절한 X선관 각도에 관한 연구)

  • Park, Myeong-Ju;Joo, Young-Cheol;Kim, Min-Suk;Yuk, Jeong-Won;Kim, Han-Yong;Kim, Dong-Hwan
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.299-304
    • /
    • 2022
  • This study uses the 'S-align' function to present a reference value of the X-ray tube angle for the realization of an image similar to that of the chest PA image during chest AP radiography. This study targeted dummy phantom and used a 17"×17" DR image receptor. The irradiation conditions were 110 kVp, 160 mA, 50 ms, and the distance between the central X-ray and the image receptor was set to 180 cm and 110 cm, respectively. The end of the catheter was placed at the 11th thoracic height to indicate the nasogastric tube. In the case of lung apex length measurement, the mean value of measurement was 30.53±0.47 in PA. T 0°, TCA 5~25°, TCE 5~15° were 21.07±0.29, 27.60±0.21, 34.13±0.44, 39.86±0.31, 45.96±0.61 mm, 54.13±0.37 mm, 16.16±0.46 mm, 9.81±0.35 mm, 2.75±0.30 mm, respectively. For the depth of the catheter end, the average value measured at PA was 6.70±0.31 mm. T 0°, TCA 5~25°, TCE 5~15° were 15.72±0.38 mm, 24.10±0.50 mm, 29.24±0.86 mm, 34.35±0.35 mm, 41.06±1.08 mm, 48.07±0.38 mm, 12.85±0.25 mm, 7.92±0.36 mm, 3.01±0.39 mm, respectively. The length of the lung apex was similar to that of chest PA when the angle of incidence was adjusted from 5° to 10° in the leg direction, and the depth of the catheter tip was most similar when the X-ray tube angle was incident at 10° in the head direction. Therefore, To change the X-ray tube angle according to the purpose of the examination during the chest AP radiography using 'S-align' function is considered necessary.

Validation of Satellite Altimeter-Observed Significant Wave Height in the North Pacific and North Atlantic Ocean (1992-2016) (북태평양과 북대서양에서의 위성 고도계 관측 유의파고 검증 (1992-2016))

  • Hye-Jin Woo;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.135-147
    • /
    • 2023
  • Satellite-observed significant wave heights (SWHs), which are widely used to understand the response of the ocean to climate change, require long-term and continuous validation. This study examines the accuracy and error characteristics of SWH observed by nine satellite altimeters in the North Pacific and North Atlantic Ocean for 25 years (1992-2016). A total of 137,929 matchups were generated to compare altimeter-observed SWH and in-situ measurements. The altimeter SWH showed a bias of 0.03 m and a root mean square error (RMSE) of 0.27 m, indicating relatively high accuracy in the North Pacific and North Atlantic Ocean. However, the spatial distribution of altimeter SWH errors showed notable differences. To better understand the error characteristics of altimeter-observed SWH, errors were analyzed with respect to in-situ SWH, time, latitude, and distance from the coast. Overestimation of SWH was observed in most satellite altimeters when in-situ SWH was low, while underestimation was observed when in-situ SWH was high. The errors of altimeter-observed SWH varied seasonally, with an increase during winter and a decrease during summer, and the variability of errors increased at higher latitudes. The RMSEs showed high accuracy of less than 0.3 m in the open ocean more than 100 km from the coast, while errors significantly increased to more than 0.5 m in coastal regions less than 15 km. These findings underscore the need for caution when analyzing the spatio-temporal variability of SWH in the global and regional oceans using satellite altimeter data.

Evaluation of Radon Exposure During Highway Tunnel Construction by New Austrian Tunneling Method (NATM 공법에 의한 고속도로 터널 공사 중 라돈 노출 평가)

  • Ye-Ji Yu;Hyoung-Ryoul Kim;Mo-Yeol Kang;Sangjun Choi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.115-125
    • /
    • 2023
  • Objectives: This study was conducted to measure the level of radon in the air at a highway tunnel construction site in a gneiss area using the New Austrian Tunneling Method (NATM) and to evaluate exposure levels by occupation. Methods: Radon concentrations in the air were measured using E-PERM at points 300 m, 600 m, and 900 m from the tunnel entrance during the excavation and waterproofing work inside the tunnel. In addition, radon concentrations were measured during external excavation to compare with the inside of the tunnel. Personal exposure levels for major occupations including tunnel workers, construction equipment operators, waterproofers, shotcrete workers, and safety and health managers who participated in the construction were estimated using radon concentration measured in the work process area and working hours by occupation. Results: As a result of a total of 77 radon measurements, the geometric mean (GM) concentration was 71.1 Bq/m3, and the maximum concentration was 127.3 Bq/m3, which was below the indoor air quality criteria. Radon concentration by process decreased in the order of the tunnel excavation process (GM= Bq/m3, GSD=1.2), waterproofing process (GM=73.35 Bq/m3, GSD=1.2), and outside excavating process (GM=45.28 Bq/m3, GSD=1.2). Processes inside the tunnel were significantly higher than outside excavating processes (p<0.05). There was no statistically significant difference in radon concentration measured inside by distance from the tunnel entrance, but the innermost point of the tunnel, 900 m (GM=79.24 Bq/m3, GSD=1.27), measured the highest. Conclusions: The occupation with the highest individual exposure to radon was tunnel worker (64.16 Bq/m3), followed by construction equipment driver (64.04 Bq/m3) and waterproofer (63.13 Bq/m3).

Bio-monitoring System using Shell Valve Movements of Pacific Oyster (Crassostrea gigas) (Detecting Abnormal Shell Valve Movements Under Hypoxia Water using Hall Element Sensor) (참굴(Crassostrea gigas)의 패각운동을 이용한 생물모니터링 시스템 연구 (빈산소에서 홀 소자를 이용한 패각운동 측정))

  • Jeon, Jin-Young;Moon, Su-Yeon;Oh, Seok Jin
    • Journal of Marine Life Science
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • We investigated the possibility of a bio-monitoring system for detecting hypoxic water in coastal area using shell valve movements of Pacific oyster (Crassostrea gigas), which showed most aquaculture production in Korea, with Hall element sensor. In filtrating water to confirm shell valve movement (SVM) under normal condition, it showed spikes which mean a relatively fast closing condition after opened condition of average 5~12 mm, and then the SVM showed back to opening condition slower than closing speed SVM numbers during light period were similar to that of dark period (p<0.05). When dissolved oxygen (DO) concentration was reduced from 7 mg l-1 to 3 mg l-1, SVM numbers were increasing with decreasing of DO, and showed abnormality SVMs as compare with normal condition. Moreover, in the condition of 2 mg l-1, Distance between light and left shell showed gradually decreased, and then we could not detected SVMs due to closed condition. Thus, if we quickly detect abnormal environmental variations as hypoxia water using bio-monitoring of SVM, it may be contribute to increased productivity by dramatically reducing damages in aquaculture.

A Study of the Development for Fatty Liver Quantification Diagnostic Technology from Ultrasound Images using a Simulated Fatty Liver Phantom (모사 지방간 팬텀을 활용한 초음파영상에서 지방간 정량화 진단 기술 개발을 위한 연구)

  • Yei-Ji Lim;Seung-Man Yu
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.135-144
    • /
    • 2024
  • Ultrasonography examination has limitations in quantifying hepatic fat quantification. Therefore, this study aimed to experimentally demonstrate whether changes in signal attenuation during ultrasound imaging can be quantified using simulated hepatic phantoms to assess hepatic fat content. Additionally, we aimed to evaluate the potential of ultrasound imaging for diagnosing hepatic fatty liver by analyzing the relationship between hepatic fat content and signal intensity in ultrasound images. In this study, we developed a total of five stimulated hepatic phantoms by homogeneously mixing water and oil. We confirmed the fat content of the phantoms using magnetic resonance imaging (MRI) and ultrasound imaging, and measured signal intensity according to distance in ultrasound images to analyze the correlation and mean comparison between fat content and signal intensity. We observed that as the fat content increased, the ultrasound penetration intensity decreased, confirming the potential for quantifying hepatic fat content using ultrasound. Additionally, the analysis of the correlation between the measured fat content using MRI and the signal intensity measured in ultrasound images showed a high correlation. Statistical analysis in our study confirmed that as the fat content increased, the slope representing signal during ultrasound imaging (US-GRE) decreased. In this study, it was statistically confirmed that the US-GRE value of ultrasound images gradually decreases as the fat content increases, and it is believed that US-GRE can serve as a biomarker expressing fatty liver content.