• 제목/요약/키워드: Maxwell stress tensor

검색결과 62건 처리시간 0.021초

자기벡터포텐셜을 이용한 3차원 전자력 계산 (Electromagnetic Force Calculation using Magnetic Vector Potentials in 3-D Problems)

  • 양재진;이복용;이병환;이기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.153-155
    • /
    • 1994
  • Electric machines such as motors which have moving parts are desgined for producing mechanical force or torque. The accurate calculation of electromagnetic force and torque is important in the design these machines, Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. In the problems including current source, magnetic vector potentials(MVP) have mostly been used as an unknown variables for field analysis by numerical method; e, g. FEM. This paper, thus, introduces both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetrical FEM. In each case, the calculated force are tabulated for several mesh schemes.

  • PDF

Parametric Analysis of Tubular-Type Linear Magnetic Couplings with Halbach Array Magnetized Permanent Magnet by Using Analytical Force Calculation

  • Kim, Chang-Woo;Choi, Jang-Young
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.110-114
    • /
    • 2016
  • Magnetic couplings are widely used in various industrial applications because they can transmit magnetic force without any mechanical contact. In addition, linear couplings have many advantages. For example, they do not need to convert rotary motion to linear motion. This paper shows an analytical analysis of tubular type linear magnetic couplings (TLMCs) with a Halbach array magnetized permanent magnet (PM). An analytical method for magnetic fields owing to PMs is performed by using magnetic vector potential as well as Poisson and Laplace equations. Then, the magnetic force is calculated by using the Maxwell stress tensor. The analytical analysis results were compared with finite element method (FEM) results. In addition, we predicted the magnetic force characteristic according to design parameters such as the iron core thickness, inner PM thickness to -outer PM thickness ratio, PM segment ratio of the axial magnetized PM segment and radial magnetized PM segment, and various pole numbers.

3차원 등가자기회로망법을 이용한 Brushless DC 모터의 진동원으로서의 Radial Force Density 해석 (Analysis of Radial Force Density as a Vibration Source in Brushless DC Motor Using 3D Equivalent Magnetic Circuit Network Method)

  • 전연도;허진;윤상백;홍정표;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.171-173
    • /
    • 1997
  • This paper presents analysis of the radial force density in brushless DC motor of which distribution is not uniform in the axial direction. The analysis considering 3D shape of teeth and overhang is not only important but essential to calculate the radial force density that acts on the teeth of stator, because it is frequent source of vibration and changes at the end of teeth. For the analysis, a new 3D equivalent magnetic circuit network method taking into account movement of the rotor without remesh is proposed. The radial force density is calculated by Maxwell stress tensor and analyzed by discrete Fourier transform.

  • PDF

자기시스템의 전자력 밀도 해석 (Electromagnetic Force Density Analysis of Magnetic System)

  • 이세희;최명준;김창욱;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.201-203
    • /
    • 1997
  • As electromagnetic systems have the complexity and high performance, they should be designed to take into account the vibration, noise and strain of mechanical aspect as well as electrical problems. Until now, mechanical approaches have been tried to analyze the subject, but it is difficult to figure out the matter in mechanical consideration. Because they are mainly related to electromagnetic phenomena. This paper deals with the theories and numerical formulations of magnetic force density. Several methods are applied to an actuator and DC machine model to calculate magnetic force density. These results are compared with the total force obtained by maxwell stress tensor and virtual work principle.

  • PDF

유한 요소법에 의한 매입형 영구 자석 동기 전동기의 특성 해석 (Analysis of Interior-Type Permanent Magnet Synchronous Motor Using Finite Element Method)

  • Kim, Jin-Boo
    • 대한전기학회논문지
    • /
    • 제41권7호
    • /
    • pp.723-734
    • /
    • 1992
  • In this paper, the characteristics of IPMSM(Interior-type Permanent Magnet Synchronous Motor) are simulated using 2-D. finite element method. This paper deals with the following characteristics : air gap flux density considering skew, back e.m.f., torque and inductance. Back e.m.f. is calculated using the flux obtained from the vector potential of FEM solution. Torque is calculated using improved Maxwell stress tensor method and current angle which is obtained from the controller. Direct axis inductance and quadrature axis inductance are also calculated using energy perturbation method. Computed results are found in satisfactory agreement with experimental ones. This method also can be applied for the computation and analysis of the characteristics of SPMSM, current-excited synchronous motor and reluctance motor.

각종 리니어펄스모터(LPM)의 자기회로와 그 특성해석 (Characteristics Analysis and Magnetic Circuits of Various Kinds Linear Pulse Motor)

  • 김일중;이은웅;김종겸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1091-1094
    • /
    • 1993
  • Recently, in the industrial applications, the direct drive method with linear pulse motor(LPM) has been introduced and studied for practical use. This paper describes the analysis result of hybrid(HB), permanent magnet(PM), and variable reluctance(VR) type LPM. First, calculation of the flux density distribution in the air gap at these LPM by finite element method. And by mean of Maxwell's stress tensor with above magnetic flux density, calcurated the static thrust force and normal force.

  • PDF

2상 PM형 리니어스텝핑모터의 정추력(靜推力) 특성해석 (THE THRUST CHARACTERISTICS ANALYSIS OF 2-PHASE PM TYPE LINEAR STEPPING MOTOR)

  • 배진호;정도영;이상호;오홍석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.984-986
    • /
    • 1993
  • In this paper, We have simulated and measured the characteristics of the static thrust of 2-phase PM type Linear Stepping Motor(LSM). And, the 2-phase PM type Linear Stepping Motor is simulated using 2-Dimensional finite element method. For calculating force, Maxwell stress tensor method is applied.

  • PDF

반경 방향으로 자화된 Tubular 타입 자기 커플링의 특성 해석 (Characteristics Analysis of Radially Magnetized Tubular type Magnetic Coupling)

  • 김창우;정경훈;최장영
    • 전기학회논문지
    • /
    • 제64권11호
    • /
    • pp.1551-1557
    • /
    • 2015
  • Magnetic coupling is used where required high reliability. because magnetic coupling's durability is stronger than mechanical coupling's durability. This paper shows the characteristics of radially magnetized tubular type magnetic coupling by using Analytical method such as space harmonic method. Analytical method was used, to find force characteristics. First, on the basis of the magnetic vector potential and two-dimensional(2-D) polar-coordinate system, the magnetic field solutions of the radially magnetized permanent magnet are obtained. And we obtain the analytical solutions for the flux density produced by permanent magnet. Finally, we can calculate the force by using the Maxwell stress tensor. And then, Finite element method(FEM) is used to validate force characteristics.

유한요소법을 이용한 전자기력 계산방법의 비교 (Comparison of Force Calculation Methods in Finite Element Method)

  • ;류재섭;고창섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.100-103
    • /
    • 2001
  • The magnetic force calculation methods, the Maxwell's stress tensor method, virtual work method, and nodal force method are reviewed. The methods are applied to the magnetic force calculation of 2D linear and nonlinear Problems. As the results the convergence of the methods as the number of elements increases, accuracy of the methods, and integral path dependence of the methods are discussed. Finally some recommendations on the usage of the methods, including the determination of the integral path, are given.

  • PDF

비전도성 벽과의 상호작용에 따른 한 쌍 입자의 직류 유전영동 운동 (Direct-Current Dielectrophoretic Motions of a Pair of Particles due to Interactions with a Nearby Nonconducting Wall)

  • 강상모
    • 대한기계학회논문집B
    • /
    • 제39권10호
    • /
    • pp.805-815
    • /
    • 2015
  • 본 연구에서는 외부에서 균일한 직류전기장이 벽과 평행하게 인가될 때 점성유체 안에 자유롭게 잠겨있는 한 쌍의 입자들이 근처의 비전도성 평면 벽과의 상호작용 때문에 유발되는 2차원 유전영동 운동에 대하여 수치연구를 수행하였다. 해석 결과 운동 특성은 입자들이 가지는 전기전도도 부호 조합과 입자들과 벽 사이 간격에 따라 크게 달라졌다. 두 입자가 서로 같은 전도도 부호를 가지면 입자들은 공전을 하다가 최종적으로 전기장과 평행하게 정렬한다. 반면에 서로 다른 부호를 가지면 입자들은 반대방향으로 공전하다 결국 전기장과 수직하게 정렬한다. 동시에 입자들은 전도도 조합과 무관하게 반발력을 받아 벽으로부터 멀어지는 쪽으로 이동한다. 입자들이 벽으로부터 멀리 떨어져 있을수록 입자들과 벽 사이 유전영동 상호작용 효과는 서서히 사라지며 대신 입자와 입자 사이 효과가 점점 두드러진다.