• Title/Summary/Keyword: Maxwell simulator

Search Result 28, Processing Time 0.028 seconds

Electric Field Distribution of High Voltage Polymer Bushing with Inner Field Shaper Designs (초고압 폴리머 부싱의 내부쉴드 형상에 따른 전계분포 특성)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.369-370
    • /
    • 2008
  • This paper describes the electric field distribution of high voltage polymer bushing with inner field shaper designs. The field control can be achieved by means of the designs of such internal field shaper. But high electric stress occurred between field shaper and central conductor by the closely space. In accordance, the floating and ring shield designs was importance for electric stress grading at critical parts of the bushing. The bushing has a central conductor, and internal ring shield or floating shield, gaps are formed between field shaper and ring shield. Accordance equipotential lines extend through gaps. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing.

  • PDF

The development of Bundle Type Ploymer Phase to Phase Spacer For 345kV Power Transmission Line (345kV 2도체용 폴리머 상간스페이서 개발)

  • Kim, Wan-Jong;Park, Bong-Guy;Park, Kwang-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.331-332
    • /
    • 2008
  • 최근 엘리노 현상과 기상이변(태풍 및 폭설)으로 갤로핑 및 전선도약(Sleet jump) 등에 따른 송전선로 상간단락 고장의 우려가 날로 증가하고 있다. 특히 345kV급 간선계통의 상간단락 고장은 순간전압 강화 등 전기품질 저하로 이어질 수 있다. 이에 본 논문에서는 345kV 2도체용 폴리머 상간스페이서를 개발하여 상간단락고장에 대한 근본적인 예방책을 제시하였다. 폴리머용 345kV 절연 설계, 고강도 FRP ROD 설계 및 턴버클을 이용한 미세조정 장치 적용, 코로나 방지를 위한 코로나 링 채용 등을 통하여 최적의 345kV 2도체용 상간스페이서를 고안하였다. 또한 상간스페이서 소재의 성능 평가 및 해석을 위하여 Maxwell 2D Field Simulator를 이용하여 모델링하였으며 갓 형상에 따른 전계분포 해석과 FRP와 고무 계면에서의 전계분포 해석도 수행하였다.

  • PDF

Analysis of Electric Field Distribution of High Voltage Polymeric Bushing with Structure (초고압 폴리머 부싱의 구조에 따른 전계분포 해석)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.489-490
    • /
    • 2008
  • This paper describes the analysis of electric field distribution of high voltage polymeric bushing with structure. The high voltage bushing consists of FRP tube and housing made of LSR. The field control can be achieved by means of the design of such internal field shaper and top corona ring as grading electrodes. In accordance, the optimized design uses both internal and external elements for electric stress grading at critical parts of the bushing. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymeric bushing.

  • PDF

EFFICIENT DESIGN OF CAPACITOR DISCHARGE IMPULSE MAGNETIZER SYSTEM FOR 8-POLE MAGNET

  • Kim, Pill-Soo;Kim, Yong;Baek, Soo-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.828-832
    • /
    • 1995
  • This paper describes the efficient design, analysis method and experimental verification of capacitor discharge impulse magnetizer system. A capacitor discharge magnetizer system is used to produce a high current impulse of short duration in this magnetizing fixture. The parasitic resistance and parasitic inductance of the capacitor discharge impulse magnetizer system have been estimated using known air-core test coil. Finite element analysis (using MAXWELL 2-D field simulator) and magnetizing circuit analysis (using SPICE) are also used as part of the design and analysis process of the capacitor discharge impulse magnetizer system. Application study for a magnetizing fixture design is shown. 8-pole magnetizing fixture has been designed and analyzed using finite element analysis. The fixture design for 8-pole magnet are presented along with the experimental results. The experimental results have been achieved using a high-voltage, high-energy capacitor discharge impulse magnetizer and 8-pole iron core fixtures (charging voltage : 2000[V], capacitor bank : 4000[$\mu\textrm{F}$]).

  • PDF

The Optimum Structure Design of 1005 RF Chip Inductors for GHz Band (GHz 대역을 위한 1005 RF 칩 인덕터의 최적 구조 설계)

  • Kim, Jae-Wook;Ryu, Chang-Keun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.785-788
    • /
    • 2005
  • In this study, micro-scale, high-performance, solenoid-type RF chip inductors were investigated. The size of the RF chip inductors fabricated in this work was $1.0{\times}0.5{\times}0.5mm^3$ The material and shape of the core were 96% $Al_2O_3$ and I-type. The material and number of turn of coil were copper (Cu) and 6. The diameter ($40{\mu}m$) of coil and length (0.35mm) of solenoid were determined by a Maxwell three-dimensional field simulator to maximize the performance of the inductors. High frequency characteristics of the inductance (L) and quality-factor (Q) of developed inductors were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). The inductors developed have inductances of 10.8nH and quality factors of 25.2 at 250MHz, and show results comparable to those measured for the inductors prepared by CoilCraftTm that is one of the best chip inductor company in the world. The simulated data predicted the high-frequency data of the Land Q of the inductors developed well.

  • PDF

Fundamental Aspects of the Unbalance Condition for the Forces involved in Rail Gun Recoil

  • Banerjee, Arindam;Radcliffe, P.J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.317-324
    • /
    • 2014
  • The forces involved in the firing of the electromagnetic rail gun may be analyzed from Amperian, Maxwellian and Einsteinian approaches. This paper discusses these different paradigms with regard to rail gun performance modeling relating to the generation and balance of the forces caused by the currents and their induced magnetic fields. Recent experimental work on model rail guns, where the armature is held static, shows very little recoil upon the rails, thereby indicating a possible violation of Newton's Third Law of Motion. Dynamic testing to show this violation, as suggested by the authors in an earlier paper, has inherent technical difficulties. A purpose-built finite element C/C++ simulator that models that suspended rail gun firing action shows a net force acting upon the entire rail gun system. A new effect in physics, universal in scope, is thus indicated: a current circulating in an asymmetric and rigid circuit causes a net force to act upon the circuit for the duration of the current. This conclusion following from computer simulation based upon Maxwellian electrodynamics as opposed to the more modern relativistic quantum electrodynamics needs to be supported by unambiguous experimental validation.

A Study on the Design of Compact Polymer Bushing with Inner Control Shield (내부쉴드 구조에 따른 컴팩트한 폴리머 부싱 설계에 관한 연구)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.436-442
    • /
    • 2009
  • This paper describes a study on the design of compact polymer bushing with inner control shield. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. In accordance, the field control can be achieved by means of the designs of such inner control shields. The floating and ring shield designs was decreased electric field concentration at critical parts of the bushing. The shield gaps is formed between field shaper and ring shield. Accordance equipotential lines extend through gaps. As a result, the resulting electrical stress are thus reduced in the range $17{\sim}23%$ in the bushing with floating and ring shield designs. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

A Study on Fabrication of Magnetic Thin Film Inductors for DC-DC Converter

  • Lee, Young-Ae;Kim, Sang-Gi;Do, Seung-Woo;Lee, Yong-Hyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.225-225
    • /
    • 2010
  • In this study, the optimum structure of a magnetic thin film inductor was designed for application of DC-DC converters. The $Ni_{81}Fe_{19}$ (at%) alloy was selected as a high-frequency($\geq$ MHz) magnetic thin film core material and deposited on various substrates (bare Si, $SiO_2$ coated Si) using a high vacuum RF magnetron sputtering system. As-deposited NiFe thin films show similar magnetic properties compared to bulk NiFe alloys, indicating that they have a good film quality. The optimum design of solenoid-type magnetic thin film inductors was performed utilizing a Maxwell computer simulator (Ansoft HFSS V7.0 for PC) and parameters obtained from the magnetic properties of magnetic core materials selected. The high-frequency characteristics of the inductance(L) and quality factor(Q) obtained for the designed inductors through simulation agreed well with those obtained by theoretical calculations, confirming that the simulated result is realistic. The optimum structure of high-performance ($Q{\geq}60$, $L\;=\;1{\mu}H$, efficiency${\geq}90%$), high-frequency (${\geq}5MHz$), and solenoid-type magnetic thin film inductors was designed successfully.

  • PDF