• Title/Summary/Keyword: Maxwell 3D finite element

Search Result 40, Processing Time 0.053 seconds

A study on Properties Condition for the most suitable design of the Ring-shaped electrodeless fluorescent lamp (환형 무전극 형광램프의 최적 설계를 위한 특성조건 분석)

  • Jo, Ju-Ung;Lee, Seong-Jin;Nam, Joong-Hee;Choi, Yong-Sung;Kim, Yong-Kab;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.211-214
    • /
    • 2004
  • The advantage of ring-shaped electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. Therefore, the life time of ring-shaped electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours and is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, maxwell 3D finite element analysis program(Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250[kHz] and some specific conditions

  • PDF

Study on Design Parameters that Affect the Forming Force of the Magnetic Pulse Forming Device (자기 펄스 성형장치의 성형력에 영향을 미치는 설계 파라미터에 관한 연구)

  • Lee, Man Gi;Yi, Hwa Cho;Kim, Jin Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.79-82
    • /
    • 2015
  • The design parameter study about the magnetic pulse forming is performed using finite element analysis with MAXWELL. The first case of design parameters is about the initial charging voltage and the capacitance and the second case of design parameters are about the winding turns and the spacing of electromagnetic coil. The 3D finite element model of electromagnetic forming system is created and the magnetic force is calculated. The effects of design parameters on the magnetic forming force are investigated.

Electrostatic Analysis and Protection of the Industrial Type Inkjet Plotter (산업용 잉크젯 플로터의 정전기 해석 및 차폐)

  • Choi, Geun-Soo;Baek, Soo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.3
    • /
    • pp.159-167
    • /
    • 2006
  • According to industrial development, all fields using chemical instrument and material are generated an electrostatics. Electrostatic problems were very important part to all these components, moving system, printer, clothe machines etc. This paper was represented an analysis of electrostatic electrification by FEM (finite element method) of industrial type Inkjet plotter. Here electrostatics distribution analysis is accomplished by Maxwell-2D. We are showed an electrostatics generation source by rubbing and meager profits of electric charge. It know electronic values with each system position by experiment. These are decreased through earth and electricity shielding. Therefore this paper is proved by the simulation and experiment result.

Design of Hybrid Magnet Wheels using 3D Finite Element Analysis for Wall-climbing Robot (벽면이동 로봇용 하이브리드 자석바퀴 3차원 유한요소해석 및 설계)

  • Han, Seung-Chul;Lee, Jae-Yong;Kim, Jin-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.88-92
    • /
    • 2010
  • We propose a new design of the hybrid-magnet wheel to make it possible for a mobile robot to be attached to the vertical plane and be in motion. In the new suggested design, a permanent magnet is utilized to enhance the adhesive force, while an electromagnet is adopted to reduce the magnetic field and the adhesive force for detaching easily. To analysis the performance of the robot, 3 dimensional finite element analysis is executed using commercial electromagnetic analysis program, Maxwell. The results show that the adhesive force is reduced effectively by the electromagnet in the new designed robot system.

Electromagnetic Simulation of Ring-shaped Electrodeless fluorescent Lamps and its Electrical and Optical Characteristics (환형 무전극 형광램프의 전자계 시뮬레이션, 전기적 및 광학적 특성)

  • 최용성;조주웅;이영환;김광수;박대희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.552-559
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, the advantage of ring-shaped electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. The ring-shaped electrodeless lamp is intended as a high efficiency replacement for the incandescent reflector lamp in many applications. Therefore, the life time of ring-shaped electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours. In this paper, maxwell 3D finite element analysis program(Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 KHz and some specific conditions. The optical characteristics were measured luminance and a temperature and an optical spectrum distribution for 10 min in a one minute interval at the same time. With a goal of finding alternative materials, we show measurement results of electrical characteristics of a ring-shaped electrodeless fluorescent lamp as a function of frequency and the number of coil turns using a highly permeable($\mu$$_{r}$(equation omitted) 2,000) Mn-Zn ferrite. These results are compared with those of conventional ring-shaped electrodeless fluorescent lamp. It is found that the resistance, inductance and impedance are increased while the quality factor decreases as frequency increases.s.

3D Design and Analysis of Cogging Torque in 900kW Permanent Magnet Synchronous Generator (900kW급 영구자석형 동기발전기 3차원 설계 및 코깅 토크 분석)

  • Lee, Sang-Woo;Kim, Tae-Hoon;Kim, Dong-Eon;Chung, Chin-Wha;Park, H.C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.443-443
    • /
    • 2009
  • Cogging Torque is induced by the magnetic attraction between the rotor mounted permanent magnet(PM) and the stator teeth. This torque is an unwanted effect causing shaft vibration, noises, metal fatigues and increased stator length. A variety of techniques exist to reduce the cogging torque of PM generator. Even though the cogging torque can be vanished by skewing the stator slots by one slot pitch or rotor magnets, manufacturing cost becomes high due to the complicated structure and increased material costs. This paper introduces a new cogging torque reduction technique for PM generators that adjusts the azimuthal positions of the magnets along the circumference. A 900 kW class PMSG model is simulated using a three dimensional finite element method and the resulting cogging torques is analyzed using the Maxwell tensor stress tensor. Using the 3D simulation, the end contribution of the cogging torque is accurately calculated.

  • PDF

Analysis of Lorentz force of radial magnetic field type vacuum interrupter using finite element method (유한요소해석을 통한 횡자계 방식의 진공인터럽터 전극의 로렌츠 힘 분석)

  • KIM, Byoung-Chul;YOON, Jae-Hun;HOE, Jun;KANG, Seong-Hwa;LIM, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1197-1198
    • /
    • 2008
  • There have been few papers using finite element method(FEM) to analyze arc driving force for spiral type vacuum interrupter electrode up to date while there have been many papers dealing with AMF type electrode by means of FEM. AMF analysis is very important in AMF type electrode because it has proportional relation with effective area which means the area of magnetic flux density above critical magnetic flux density to diffuse arc. In the same manner, arc driving force is an important factor to drive arc by Lorentz force. In this paper two models were calculated and compared by using commercial FEM software Maxwell 3D.

  • PDF

Electromagnetic Force Calculation using Magnetic Vector Potentials in 3-D Problems (자기벡터포텐셜을 이용한 3차원 전자력 계산)

  • Yang, Jae-Jin;Lee, Bok-Yong;Lee, Byung-Hoan;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.153-155
    • /
    • 1994
  • Electric machines such as motors which have moving parts are desgined for producing mechanical force or torque. The accurate calculation of electromagnetic force and torque is important in the design these machines, Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. In the problems including current source, magnetic vector potentials(MVP) have mostly been used as an unknown variables for field analysis by numerical method; e, g. FEM. This paper, thus, introduces both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetrical FEM. In each case, the calculated force are tabulated for several mesh schemes.

  • PDF

A P-HIERARCHICAL ERROR ESTIMATOR FOR A FEM-BEM COUPLING OF AN EDDY CURRENT PROBLEM IN ℝ3 -DEDICATED TO PROFESSOR WOLFGANG L. WENDLAND ON THE OCCASION OF HIS 75TH BIRTHDAY

  • Leydecker, Florian;Maischak, Matthias;Stephan, Ernst P.;Teltscher, Matthias
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.139-170
    • /
    • 2013
  • We extend a p-hierarchical decomposition of the second degree finite element space of N$\acute{e}$d$\acute{e}$lec for tetrahedral meshes in three dimensions given in [1] to meshes with hexahedral elements, and derive p-hierarchical decompositions of the second degree finite element space of Raviart-Thomas in two dimensions for triangular and quadrilateral meshes. After having proved stability of these subspace decompositions and requiring certain saturation assumptions to hold, we construct a local a posteriori error estimator for fem and bem coupling of a time-harmonic electromagnetic eddy current problem in $\mathbb{R}^3$. We perform some numerical tests to underline reliability and efficiency of the estimator and test its usefulness in an adaptive refinement scheme.

Numerical simulation by the finite element method of the constructive steps of a precast prestressed segmental bridge

  • Gabriela G., Machado;Americo Campos, Filho;Paula M., Lazzari;Bruna M., Lazzari;Alexandre R., Pacheco
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • The design of segmental bridges, a structure that typically employs precast prestressed concrete elements and the balanced cantilever construction method for the deck, may demand a highly complex structural analysis for increased precision of the results. This work presents a comprehensive numerical analysis of a 3D finite element model using the software ANSYS, version 21.2, to simulate the constructive deck stages of the New Guaiba Bridge, a structure located in Porto Alegre city, southern Brazil. The materials concrete and steel were considered viscoelastic. The concrete used a Generalized Kelvin model, with subroutines written in FORTRAN and added to the main model through the customization tool UPF (User Programmable Features). The steel prestressing tendons used a Generalized Maxwell model available in ANSYS. The balanced cantilever constructive steps of a span of the New Guaiba Bridge were then numerically simulated to follow the actual constructive sequence of the bridge. A comparison between the results obtained with the numerical model and the actual vertical displacement data monitored during the bridge's construction was carried out, showing a good correlation.