• Title/Summary/Keyword: Maxwell의 상반정리

Search Result 2, Processing Time 0.014 seconds

Investigation on Vibration Characteristics and Structural Reciprocity of Heunginjimun (흥인지문의 진동특성 및 상반성 분석)

  • Choi, Jae-Sung;Lee, Sung-Kyung;Min, Kyung-Won;Yoon, Weon-Kyu;Kim, Derk-Moon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.338-347
    • /
    • 2010
  • Heunginjimun designated as a Treasure No.1 is a two-story wooden structure with 5 bay and 2 bay in its front and side views, respectively. This paper presents an investigation on vibration characteristics of Heunginjimun through both ambient vibration and impact hammer tests. Ambient vibration test was performed to identify the natural frequency of Heunginjimun from the spectrum analysis of time history. Impact hammer test was undertaken to find the frequency of Heunginjimun which is affected by the surrounding traffics and to verify the reciprocal principle for the wooden structural system. Ambient vibration test results of Heunginjimun showed that the natural frequencies in two principal axes 1.5 Hz and 1.1 Hz, respectively. It was confirmed from impact hammer tests for a ground that the frequency of 4.2 Hz is caused by the traffics surrounding Heunginjimun. It was also observed that from the impact hammer test results between two locations in Heunginjimun that the transfer functions measured from two corresponding locations coincided well with each other. This result shows that the wooden structural system is globally linear, and the reciprocal principle is established.

Calculation of weight functions in single edge notched specimen (SEN시편에서의 무게함수 계산)

  • 안득만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.604-610
    • /
    • 1991
  • In this paper, the weight functions for the Mode I and Mode II in SEN(single edge notched) specimen are obtained by superposition of the displacement in the singular field of the Buckner type and the displacements by opposite tractions induced by the singular field. The stress intensity factors, $K_{I}$ and $K_{II}$ are calculated by the weight function theory in SEN specimen under the loading equivalent to uniform tension and shear at infinity in Griffith crack. And the results are compared with the exact solutions.s.