• Title/Summary/Keyword: Maximum vertical displacement

Search Result 171, Processing Time 0.025 seconds

Experimental Study of the End-plate Gap Effect on the Performance of Extended End-plate Type Splice (이음면 이격이 확장형 단부판 이음부 성능에 미치는 영향에 대한 실험적 연구)

  • Kim, Cheol Hwan;Lee, Myung Jae;Kim, Hee Dong;Kim, Sa Bin
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.427-438
    • /
    • 2016
  • This study is experimental research for the effect of gap at the end plate on the performance of extended end-plate type splice. For this research, simple beam type specimens by using extended end-plate type splice are planned. Main variables are the initial gap between end-plates, the installation of finger shim plate before the installation of high tension bolts, the final gap between end-plates, and the installation of finger shim plate after the installation of high tension bolts. The static loading tests results show that the maximum bending strength of splice is not dependent on the gap, but the vertical displacement, initial stiffness and elastic stiffness are affected by the gap. In addition to that, the possibility of brittle fracture is increased when the torque of high tension bolt is used to control the gap. Thus, careful consideration is needed in this case.

Three-dimensional finite element analysis of platform switched implant

  • Moon, Se-Young;Lim, Young-Jun;Kim, Myung-Joo;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • PURPOSE. The purpose of this study was to analyze the influence of the platform switching concept on an implant system and peri-implant bone using three-dimensional finite element analysis. MATERIALS AND METHODS. Two three-dimensional finite element models for wide platform and platform switching were created. In the wide platform model, a wide platform abutment was connected to a wide platform implant. In the platform switching model, the wide platform abutment of the wide platform model was replaced by a regular platform abutment. A contact condition was set between the implant components. A vertical load of 300 N was applied to the crown. The maximum von Mises stress values and displacements of the two models were compared to analyze the biomechanical behavior of the models. RESULTS. In the two models, the stress was mainly concentrated at the bottom of the abutment and the top surface of the implant in both models. However, the von Mises stress values were much higher in the platform switching model in most of the components, except for the bone. The highest von Mises values and stress distribution pattern of the bone were similar in the two models. The components of the platform switching model showed greater displacement than those of the wide platform model. CONCLUSION. Due to the stress concentration generated in the implant and the prosthodontic components of the platform switched implant, the mechanical complications might occur when platform switching concept is used.

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

Experimental and numerical study on mechanical behaviour of grouted splices with light-weight sleeves

  • Quanwei Liu;Tao Wu;Zhengyi Kong;Xi Liu;Ran Chen;Kangxiang Hu;Tengfei Xiang;Yingkang Zhou
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.165-182
    • /
    • 2024
  • Grouted sleeve splice (GSS) is an effective type of connection applied in the precast concrete structures as it has the advantages of rapidly assembly and reliable strength. To decrease the weight and cost of vertical rebar connection in precast shear walls, a light-weight sleeve is designed according to the thick-cylinder theory. Mechanical behaviour of the light-weighted GSS is investigated through experimental analysis. Two failure modes, such as rebar fracture failure and rebar pull-out failure, are found. The load-displacement curves exhibit four different stages: elastic stage, yield stage, strengthening stage, and necking stage. The bond strength between the rebar and the grout increases gradually from outer position to inner position of the sleeve, and it reaches the maximum value at the centre of the anchorage length. A finite element model predicting the mechanical properties of the light-weighted GSS is developed based on the Concrete Damage Plasticity (CDP) model and the Brittle Cracking (BC) model. The effect of the rebar anchorage length is significant, while the increase of the thickness of sleeve and the grout strength are not very effective. A model for estimating ultimate load, including factors of inner diameter of sleeves, anchorage length, and rebar diameter, is proposed. The proposed model shows good agreement with various test data.

High-resolution Seismic Imaging of Shallow Geology Offshore of the Korean Peninsula: Offshore Uljin (신기 지구조운동의 해석을 위한 한반도 근해 천부지질의 고해상 탄성파 탐사: 울진 주변해역)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Yoo, Hai-Soo;Kim, Kwang-Hee;You, Lee-Sun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.127-132
    • /
    • 2011
  • We acquired and interpreted more than 650 km of high-resolution seismic reflection profiles in the Hupo Basin, offshore east coast of Korea at $37^{\circ}N$ in the East Sea (Japan Sea) to image shallow and basement deformation. The seismic profiles reveal that the main depocenter of the Hupo Basin in the study area is bounded by the large offset Hupo Fault on the east and an antithetic fault on the west; however, the antithetic fault is much smaller both in horizontal extension and in vertical displacement than the Hupo Fault. Sediment infill in the Hupo Basin consists of syn-rift (late Oligocene. early Miocene) and post-rift (middle Miocene.Holocene) units. The Hupo Fault and other faults newly defined in the Hupo Basin strike dominantly north and show a sense of normal displacement. Considering that the East Sea has been subjected to compression since the middle Miocene, we interpret that these normal faults were created during continental rifting in late Oligocene to early Miocene times. We suggest that the current ENE direction of maximum principal compressive stress observed in and around the Korean peninsula associated with the motion of the Amurian Plate induces the faults in the Hupo Basin to have reverse and right-lateral, strike-slip motion, when reactivated. A recent earthquake positioned on the Hupo Fault indicates that in the study area and possibly further in the eastern Korean margin, earthquakes would occur on the faults created during continental rifting in the Tertiary.

Section enlargement by reinforcement of shotcrete lining on the side wall of operating road tunnel (운영중인 도로터널의 측벽하부 숏크리트 보강에 의한 단면확대)

  • Kim, Dong-Gyou;Shin, Young-Wan;Shin, Young-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.637-652
    • /
    • 2012
  • The protector with the shape of '${\sqcap}$' in cross section can be set up in the tunnel, which can be constructed for enlargement of cross section, to keep traffic flow in the tunnel. It is impossible to install the rockbolt in the side wall of tunnel due to a limited space between the protector and cutting surface of side wall. The objective of this study is to suggest the optimum thickness of shotcrete lining without rockbolt on the side wall and to evaluate the stability of tunnel enlarged. Numerical analysis was performed to evaluate the displacement at the center of tunnel, the convergence of tunnel, and the stress in shotcrete lining in 4-lane NATM road tunnel enlarged from 3-lane NATM road tunnel. The vertical displacement at the center of tunnel and the convergence of crown in the tunnel with rockbolt in the side wall were almost similar to those in the tunnel without rockbolt in the side wall. The convergence of bench/invert and the stress in shotcrete lining without rockbolt on the side wall were greater maximum 0.57 mm and 1,300 kN/$m^2$ than those with rockbolt in the side wall. The increased convergence and the stress in shotcrete lining can be reduced in incerasing of thickness of shotcrete lining about 20% (5 cm) of standard thickness, 25 cm, of shotcrete lining.

ANALYSIS OF CRUSTAL DEFORMATION DUE TO OCEAN TIDE LOADING (해양조석하중에 의한 지각변위 분석)

  • Park, Kwan-Dong;Won, Ji-Hye;Kim, Ho-Kyun;Lim, Kwan-Chang
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.249-260
    • /
    • 2007
  • The crustal deformation due to Ocean Tide Loading (OTL) in the Korean peninsula reaches up to ${\sim}3cm$ in the vertical direction. Considering that the achievable positioning accuracy of current state-of-the-art space geodesy technologies is at the several millimeter level, the centimeter-level OTL effect should be precisely modelled and corrected for. This study begins with comparison of ocean tide models and validation of OTL-prediction softwares. Different ocean tide models caused about ${\sim}6mm$ RMS differences in the vertical deformation in the Kyung-gi Bay area. When we analyzed the OTL displacements in the Seoul, Ulsan, and Seogwipo areas where three VLBI observatories are planned to be installed, the maximum displacement of ${\sim}3.5cm$ was predicted in the Seogwipo area and ${\sim}2cm$ in the Seoul and Ulsan areas. When the OTL corrections were not applied in the GPS data processing, the OTL effect propagates into the Zenith Wet Delay (ZWD) estimates, and the scale factor between ZWD differences and OTL displacements was 3.72.

Finite Element Modeling and Nonlinear Analysis of Lumbosacrum Including Partial Ilium and Iliolumbar Ligaments (부분 장골과 장요추 인대를 포함한 요추 천추골의 유한 요소 모델링 및 비선형 해석)

  • Ha, S.K.;Lim, J.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.397-409
    • /
    • 2007
  • Owing to needs of biomechanical comprehension and analysis to obtain various medical treatment designs which are related with the spine in order to cure and diagnose LBP patients, the FE modeling and nonlinear analysis of lumbosacrum including a partial ilium and iliolumbar ligaments, were carried out. First, we investigated whether the geometrical configuration of vertebrae displayed by DICOM slice files is regular and normal condition. After constructing spinal vertebrae including a partial ilium, a sacrum and five lumbars (from L1 to L5)with anatomical shape reconstructed using softwares such as image modeler and CAD modeler, we added iliolumbar ligaments, lumbar ligaments, discs and facet joints, etc.. And also, we assigned material property and discretized the model using proper finite element types, thus it was completely modeled through the above procedure. For the verification of each segment, average sagittal ROM, average coronal ROM and average transversal ROM under various loading conditions(${\pm}10Nm$), average vertical displacement under compression(400N), ALL(Anterior Longitudinal Ligament) and PLL(Posterior Longitudinal Ligament) force at L12 level, strains of seven ligaments on sagittal plane at L45 level and maximal strain of disc fibers according to various loading conditions at L45 level, etc., they were compared with experimental results. For the verification of multilevel-lumbosacrum spine including partial ilium and iliolumbar ligaments, the cases with and without iliolumbar ligaments were compared with ROM of experiment. The results were obtained from analysis of the verified FE model as follows: I) Iliolumbar ligaments played a stabilizing role as mainly posterior iliolumbar ligaments under flexion and as both posterior and anterior iliolumbar ligaments of one side under lateral bending. 2) The iliolumbar ligaments decreased total ROM of 1-8% in total model according to various motion conditions, which changed facet contact forces of L5S level by approximately 0.8-1.4 times and disc forces of L5S level by approximately 0.8-1.5 times more than casewithout ilioligaments, under various loading conditions. 3) The force of lower discs such as L45 and L5S was bigger than upper discs under flexion, left and right bending and left and right twisting, except extension. 4) It was predicted that strains of posterior ligaments among iliolumbar ligaments would produce the maximum 16% under flexion and the maximum 10% under twisting. 5) It's expected that this present model applies to the development and design of artificial disc, since it was comparatively in agreement with the experimental datum.

Model Testing on the Behavior of Laterally Loaded Pile in NC Clay Soils (정규압밀 점토 지반에서 매입말뚝의 수평거동에 관한 모형 실험 연구)

  • Kim, Byeong-Tak;Lee, Sang-Ung;Kim, Yeong-Su
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.39-52
    • /
    • 1998
  • The pupose of the present paper is to estimate the effects of constraint condition of pile head, ground condition(dry unit weight. $\gamma_4$) and embedded pile lengths on the behavior of single pile which is embedded in normally consolidated clay. BBperiment functions can be quantified to these effects obtained from the results of model teats. The ground of model tests is normally consolidated( NC ) clay under three kinds of effective vertical stress. The results of the model tests using the steel pile of two different embedded pile length and of free-head and fired-head show that the lateral load-deflection relationship is to be elasto plastic behavior below $\gamma_d/\gamma_{dmax}$: 0.84 and that the reduction of lateral load of beyond maximum lateral load($Q_{max}$) at each model test is significantly time-dependent. In this study, it is shown that the displacement relationship can be fitted to exponential function of time by model best results. The effect of ground conditions on the ultimate and yield lateral load is fitted to exponential function including the ratio of dry unit weight to maximum dry unit weight. When tests by results are compared with those from Broms and Budhu et at., the predicted results are over-estimated about 27-87 ayo. In effectivity of constraint condition of pile head on the lateral load-deflection response, the $Q_{fixed}/Q_{gree}-y/D$ relationship is highly non-linear and fitted to parabolic function.

  • PDF

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.