• Title/Summary/Keyword: Maximum shear stress

Search Result 555, Processing Time 0.032 seconds

An Analysis on the Residual Stress of Subsurface Zone due to Rolling Contact (회전접촉에 의해 발생하는 Subsurface Zone의 잔류응력에 관한 해석)

  • Gang, Gye-Myeong;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.58-64
    • /
    • 1993
  • The degree of work hardening in the subsurface zones varied with the experimental conditions under the rolling contact fatigue wear test of high carbon Cr-Ti alloy steel was evaluated by the distribution of residual stresses. Surface residual stresses before the test did not affect the wear property. Surface residual stresses after the test decreased by the increase of contact stress and running. velocity. but the maximum compressive residual stress and its depth of saturation in the subsurface zone increased. The relationship between these experimental results and the distribution of the theoritical shear stress was also discussed.

  • PDF

탄.소성 Work-Hardening 모델에 대한 Program 개발 -Lade 모델을 중심으로-

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.255-270
    • /
    • 1991
  • In recent years. finite element methods have been used with increasing effectiveness in analysis of displacements and stresses within soil masses. However, one of the weakest links in the analytical representations used in these methods is the models of the material behaviour. Herein is discribed a modification to the finite element methods that allows solution problems with realistic stress-strain relation for soils. A finite element program for the precision prediction of the stress distribution within foundation has been developed using the elasto-plastic Work-Hardening model. The developed program is verified by comparing the results of this study with the tested results for Sacramento river sand. The main results obtained from the numerical examples are as follows: The vertical total stress increments are insensitive to drainage and constitutive equation of materials. The horizontal total stress increments are considerably affected by the drainage and constitutive equation of materials. The maximum shear stresses are affected by the drainage only in elasto-ptastic meterirals. The excess pore water pressures and the volumetric strains not only are considerably affected by the constitutive equation of materials. but also have almost similar distribution.

  • PDF

Behavior of Plain and Steel Fiber Reinforced High Strengh Concrete Under Uniaxial and Biaxial Compression (1축 및 2축 압축을 받는 고강도콘크리트 및 강섬유보강 고강도콘크리트의 거동)

  • Lim, Dong-Hwan;Park, Sung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.5-8
    • /
    • 2005
  • The purpose of this study is to investigate the mechanical characteristics of plain and steel fiber high strength concrete under uniaxial and biaxial loading condition. A number of plain and steel fiber high strength concrete cubes having 28 days compressive strength of 82.7Mpa (12,000psi) were made and tested. Four principal compression stress ratios, and four fiber concentrations were selected as major test variables. From test results, it is shown that confinement stress in minor stress direction has pronounced effect on the strength and deformational behavior. Both of the stiffness and ultimate strength of the plain and fiber high strength concrete increased. The maximum increase of ultimate strength occurred at biaxial stress ratio of 0.5 in the plain high strength concrete and the value were recorded 30 percent over than the strength under uniaxial condition. The failure modes of plain high strength concrete under uniaxial compression were shown as splitting type of failure but steel fiber concrete specimens under biaxial condition showed shear type failure.

  • PDF

A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구)

  • Lee, D.C.;Kang, D.S.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.359-368
    • /
    • 2006
  • The trend on marine diesel engine productions and refinements has led to a higher mean effective pressure and thermal efficiency. These resulted in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. In view of this. the crankshaft should be able to withstand the dynamic stresses caused by load variations. Different factors including size, material and stress concentration factors should also be considered to ensure the reliability of the shafting system. As such, crankshaft must be designed and compacted within its fatigue strength. In this paper, the strength analysis of crankshaft Is carried out by: simplified method recommended by IACS(International Association Classification Societies) M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are then compared.

Behavior of Fatigue Crack Initition and Growth in S45C Steel Under Biaxial Loading (이축하중을 받는 S45C강의 피로균열의 발생과 성장거동)

  • Park, S.H.;Lee, S.H.;Kim, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.206-211
    • /
    • 2000
  • Fatigue test was conducted on a S45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading system, i.e fully reserved cyclic torsion without a superimposed static tension or compression, fully reserved cyclic torsion with a superimposed static tension and fully reserved cyclic torsion with a superimposed static compression were employed. The test results show that a superimposed static tensile mean stress reduced fatigue lifetime. however a superimposed static compressive mean stress increased fatigue lifetime. Experimental results indicated that cracks were initiated on planes of maximum shear strain with either a superimposed mean stresses or not. A biaxial mean stress had an effect on the direction which cracks nucleated and propagated at stage I (mode II).

  • PDF

Fatigue Strength Evaluation of the Clinch Joints of a Cold Rolled Steel Sheet

  • Kim, Ho-Kyung
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.131-138
    • /
    • 2009
  • Static tensile and fatigue tests were conducted using tensile-shear specimens to evaluate the fatigue strength of a SPCC sheet clinch joint. The maximum tensile strength of the specimen produced at the optimal punching force was 1750 kN. The fatigue endurance limit (=760 N) approached 43% of the maximum tensile load (=1750 N) at a load ratio of 0.1, suggesting that the fatigue limit is approximately half of the value of the maximum tensile strength. The FEM analysis showed that at the fatigue endurance limit, the maximum von-Mises stress of 373 MPa is very close to the ultimate tensile strength of the SPCC sheet (=382 MPa).

  • PDF

A Development of an Insole Type Local Shear Measurement Transducer and Measurements of Local Plantar Shear Force During Gait (인솔형 국부 전단센서의 개발 및 보행 시 발바닥의 국부 전단력 측정)

  • Jeong Im Sook;Ahn Seung Chan;Yi Jin Bok;Kim Han Sung;Kim Young Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.213-221
    • /
    • 2005
  • An insole type local shear force measurement system was developed and local shear stresses in the foot were measured during level walking. The shear force transducer based on the magneto-resistive principle, was a rigid 3-layer circular disc. Sensor calibrations with a specially designed calibration device showed that it provided relatively linear sensor outputs. Shear transducers were mounted on the locations of four metatarsal heads and heel in the insole. Sensor outputs were amplified, decorded in the bluetooth transmission part and then transferred to PC. In order to evaluate the developed system, both shear and plantar pressure measurements, synchronized with the three-dimensional motion analysis system, were performed on twelve young healthy male subjects, walking at their comfortable speeds. The maximum peak pressure during gait was 5.00kPa/B.W at the heel. The time when large local shear stresses were acted correlated well with the time of fast COP movements. The anteroposterior shear was dominant near the COP trajectory, but the mediolateral shear was noted away from the COP trajectory. The vector sum of shear stresses revealed a strong correlation with COP movement velocity. The present study will be helpful to select the material and to design of foot orthoses and orthopedic shoes for diabetic neuropathy or Hansen disease.

An Experimental Study on the Fatigue Crack Propagation Behavior in CTS Specimen under Mode II Loading (모드 II 하중을 받는 CTS 시험편의 피로균열 전파거동에 관한 실험적 연구)

  • Song, Sam-Hong;Lee, Jeong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1217-1226
    • /
    • 2003
  • The purpose of this paper is to investigate fatigue crack behavior under shear(Mode II) loading. Various specimens and devices have been used in order to produce Mode II loading in fatigue experiments for shear crack propagation. But, there is not sufficient comparisons of experimental results between Mode II and others loading modes, because of characteristics of applied loads and specimens. So, compact tension shear(CTS) specimens were used in this paper to investigate the propagation behavior of Mode II by comparing the experimental results between loading modes. We firstly observed the characteristics which was showed in Mode II experiment using CTS specimens. The experimental results under Mode II loading were compared with fatigue crack behavior under Mode I and Mixed-mode I+II loading. The characteristics for initiation and propagation behavior under Mode II loading was investigated by such comparisons.

Numerical study on effect of integrity reinforcement on punching shear of flat plate

  • Ahsan, Raquib;Zahura, Fatema T.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Reinforced concrete flat plates consist of slabs supported directly on columns. The absence of beams makes these systems attractive due to advantages such as economical formwork, shorter construction time, less total building height with more clear space and architectural flexibility. Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. To analyze the flat plate behavior under punching shear, twelve finite element models of flat plate on a column with different parameters have been developed and verified with experimental results. The maximum range of variation of punching stress, obtained numerically, is within 10% of the experimental results. Additional finite element models have been developed to analyze the influence of integrity reinforcement, clear cover and column reinforcement. Variation of clear cover influences the punching capacity of flat plate. Proposed finite element model can be a substitute to mechanical model to understand the influence of clear cover. Variation of slab thickness along with column reinforcement has noteworthy impact on punching capacity. From the study it has been noted that integrity reinforcement can increase the punching capacity as much as 19 percent in terms of force and 101 percent in terms of deformation.

Generalization and implementation of hardening soil constitutive model in ABAQUS code

  • Bo Songa;Jun-Yan Liu;Yan Liu;Ping Hu
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.355-366
    • /
    • 2024
  • The original elastoplastic Hardening Soil model is formulated actually partly under hexagonal pyramidal Mohr-Coulomb failure criterion, and can be only used in specific stress paths. It must be completely generalized under Mohr-Coulomb criterion before its usage in engineering practice. A set of generalized constitutive equations under this criterion, including shear and volumetric yield surfaces and hardening laws, is proposed for Hardening Soil model in principal stress space. On the other hand, a Mohr-Coulumb type yield surface in principal stress space comprises six corners and an apex that make singularity for the normal integration approach of constitutive equations. With respect to the isotropic nature of the material, a technique for processing these singularities by means of Koiter's rule, along with a transforming approach between both stress spaces for both stress tensor and consistent stiffness matrix based on spectral decomposition method, is introduced to provide such an approach for developing generalized Hardening Soil model in finite element analysis code ABAQUS. The implemented model is verified in comparison with the results after the original simulations of oedometer and triaxial tests by means of this model, for volumetric and shear hardenings respectively. Results from the simulation of oedometer test show similar shape of primary loading curve to the original one, while maximum vertical strain is a little overestimated for about 0.5% probably due to the selection of relationships for cap parameters. In simulation of triaxial test, the stress-strain and dilation curves are both in very good agreement with the original curves as well as test data.