• Title/Summary/Keyword: Maximum scour depth

Search Result 51, Processing Time 0.032 seconds

Scour Protection Effect around the Monopile Foundation (모노파일 기초 주변의 세굴방지 효과에 관한 연구)

  • Kim, Seon Min;Kim, Jong Kyu;Kim, Yong Kwan;Seo, Seong Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.84-90
    • /
    • 2017
  • In this research, a three-dimensional Computational Fluid Dynamics(CFD), scour characteristics around monopile was grasped and the effect of circular ring type scour protection on reducing protection was assessed. When Torsethaugen(1975) found that the scour area and its depth were coincided quantitatively On the ground of previous findings, after scour was assessed in terms of sea current velocity, we also found that the tendency of maximum scour depth and its width were increased as the sea current velocity was increased. The experiments were performed by attaching ring-circular typed scour protection under the bottom in order to reducing scour around the constructs of monopile type and showed reduced scour approximately by 68.5%. In addition, there were reduction of downward flow and bottom velocities, suggesting that scour protection reduce the effect of downward flow on scour.

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF

Monitoring bridge scour using dissolved oxygen probes

  • Azhari, Faezeh;Scheel, Peter J.;Loh, Kenneth J.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.145-164
    • /
    • 2015
  • Bridge scour is the predominant cause of overwater bridge failures in North America and around the world. Several sensing systems have been developed over the years to detect the extent of scour so that preventative actions can be performed in a timely manner. These sensing systems have drawbacks, such as signal inaccuracy and discontinuity, installation difficulty, and high cost. Therefore, attempts to develop more efficient monitoring schemes continue. In this study, the viability of using optical dissolved oxygen (DO) probes for monitoring scour depths was explored. DO levels are very low in streambed sediments, as compared to the standard level of oxygen in flowing water. Therefore, scour depths can be determined by installing sensors to monitor DO levels at various depths along the buried length of a bridge pier or abutment. The measured DO is negligible when a sensor is buried but would increase significantly once scour occurs and exposes the sensor to flowing water. A set of experiments was conducted in which four dissolved oxygen probes were embedded at different soil depths in the vicinity of a mock bridge pier inside a laboratory flume simulating scour conditions. The results confirmed that DO levels jumped drastically when sensors became exposed during scour hole evolution, thereby providing discrete measurements of the maximum scour depth. Moreover, the DO probes could detect any subsequent refilling of the scour hole through the deposition of sediments. The effect of soil permeability on the sensing response time was also investigated.

Experimental Study on the Characteristics of Local Scour Hole Downstream of V-shaped Drop Structure Model (V자형 낙차공 모형 직하류 국부세굴공 발생특성에 관한 실험적 연구)

  • Eom, Junghyun;Han, Hyeongjun;Park, Sung Won;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.8-14
    • /
    • 2019
  • A drop structure, one of the representative river-crossing structures, is constructed to stabilize a riverbed. On the other hand, the structure interrupts the continuity of the river and causes the destruction of the hydro-ecological environment. Therefore, laboratory experiments of a natural type of drop structure with low differences were performed, and the empirical formula of a local scour hole is proposed. Four experimental flow rates were tested for various types of the drop structure models with 28 test cases. Based on the scour test, it was confirmed that the maximum scour depth occurs rather than the result of applying the previously proposed scour depth formulae. Correlation analysis of the major factors of scour hole at the downstream of the drop structure revealed a strong correlation between the upstream flow characteristics, drop structure height, and total crossing length of the drop model. In addition, the depth and length estimation formula of the maximum scour hole were proposed using the dimensionless variables and validated. In the future, it is also expected that more accurate scour prediction and calculation can be derived by conducting experimental studies and numerical analysis considering the various bed materials and flow conditions.

Pier-Scour Characteristics of the Marine Bridge with Ship Impact Protection - Incheon Bridge Case - (선박충돌방지공이 설치된 해상교량의 교각 세굴 특성 분석 - 인천대교를 대상으로 -)

  • Yeo, Woon-Kwang;Ji, Un;Kim, Chang-Sung;Lim, Jong-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.203-211
    • /
    • 2008
  • More recently, the massive marine bridges in a ship passage have been constructed on the sea. Therefore, the ship impact protection for the bridge-piers are installed to consider the possibility of vessel collision danger. Due to the ship impact protection, the pier-scour characteristics are changed in comparison with the condition without the ship impact protection (SIP). In this study, the physical modeling for the Incheon Sea-Crossing Bridge was performed to analyze the pier-scour characteristics with respect to the vessel collision protection. The rigid and movable bed tests were conducted to evaluate the flow pattern, scour depth, and scourhole with and without the ship impact protection. The experimental results for the maximum scour depth is increased 0.24 m in W1 pier at the same location and 2.4 m in W2+3+4 piers due to the SIP installation. Especially, the maximum scour depth in W2+3+4 piers was occurred around the SIP.

The Local Scour around Submarine Pipelines in the Interaction Region Combined with Waves and Currents (파랑과 정상흐름의 공존역에서 해저관로 주변의 국부세굴)

  • Kim, Kyoung-Ho;Lee, Ho-Jin;Kim, Wan-Shik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.510-521
    • /
    • 2008
  • In the study, experiments are performed in the interaction region combined with wave and current to investigate the characteristics of local scour around submarine pipelines. Wave generator and current generator are used for the experiments and two current directions were used; co-direction and counter direction to the wave. The local scour depths around the pipeline are obtained according to the various pipe diameters(D), wave periods(T), wave heights(H), and current velocities(V). The experiments show that the maximum equilibrium local scour depth increases with pipe diameter, wave period, wave height, and current velocity. Using the experimental results, the correlations of scour depth and parameters such as Shields parameter($\theta$), Froude number(Fr), period parameter, Keulegan-Carpenter number(KC), Ursell number($U_R$), modified Ursell number($U_{RP}$) and ratio of velocities($U_{c}/(U_{c}+U_{m})$) are analyzed. In the interaction region combined with waves and currents, Froude number and Shields parameter are found the main parameters to cause the local scour around the submarine pipelines and this means that current governs the scour within any limits of the currents.

The Local Scour around a Slender Pile in Combined Waves and Current (파랑과 흐름이 결합된 공존역에서 파일 주변의 국부세굴)

  • Park, Jong-Hwan;Kim, Kyoung-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.405-414
    • /
    • 2010
  • In the study, experiments are performed in the mixing region combined wave and current to investigate the characteristics of local scour around a slender pile. Wave generator and current generator are used for the experiments and currents are co-directions with the waves. The local scour depths around the pipeline are obtained according to the various pipe diameters, wave periods, wave heights, and current velocities. The experiments show that the maximum equilibrium local scour depth increases with pipe diameter, wave period, wave height, and current velocity. Using the experimental results, the correlations of scour depth and parameters such as Shields parameter ($\theta$), Froude number (Fr), Keulegan-Carpenter number (KC), Ursell number ($U_R$), modified Ursell number ($U_{RP}$) and ratio of velocities ($U_c/U_c+U_m$) are analyzed. In the mixing region combined with waves and currents, The Froude number of single parameters is the main parameter to cause the local scour around a slender pile due to waves and current and this means that current governs the scour within any limits of the currents.

Scour depth analysis of foundation structure of southwestern sea offshore wind power demonstration complex (서남해 해상풍력 실증단지 기초구조물의 세굴심 분석)

  • Su-Bin Yong;Eun-Pyo Lim;Haeng-Woon Kim;Mun-Seong Gwak;In-Su Kim;In-Sung Jeon;Min-Seuk Kim
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.69-81
    • /
    • 2024
  • In order to understand water depth distribution in the waters of the southwestern sea offshore wind power demonstration complex, field observations were conducted using a multi-beam echosounder from before construction (2018.2) to operation (2022.8). After data processing and correction of the observed depth, cross-sectional analysis was performed to calculate the maximum water depth value, and time phase analysis was performed using the maximum water depth value. The maximum water depth change rate over time tended to gradually decrease, and there was little difference in the rate of change before the construction of the wind turbine foundation structure, and the rate of change was rapid when the foundation structure was under construction. As a result of time phase analysis, the rate of change of the first (2018.02) and the second (2018.05) showed a rate between -6.27 and -4.13, on average, as the rate of change before the construction of the offshore wind farm, and there was no difference between the first and second rates. The third (2018.11) rate of change was -4.25 to -1.82, and the fourth (2019.04) rate of change was -2.34 to -1.22, and the rate of change increased rapidly after the third time. The fifth (2019.07) rate of change was -2.11 to -1.31, the sixth (2021.05) rate of change was -2.09 to -1.28, and the seventh (2022.08) was -2.11 to -1.22 rate of change, and after the rate of change reached some extent, the change was analyzed in an insufficient graph.

Prediction of scour around single vertical piers with different cross-section shapes

  • Bordbar, Amir;Sharifi, Soroosh;Hemida, Hassan
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.43-58
    • /
    • 2021
  • In the present work, a 3D numerical model is proposed to study local scouring around single vertical piers with different cross-section shapes under steady-current flow. The model solves the flow field and sediment transport processes using a coupled approach. The flow field is obtained by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations in combination with the k-ω SST turbulence closure model and the sediment transport is considered using both bedload and suspended load models. The proposed model is validated against the empirical measurements of local scour around single vertical piers with circular, square, and diamond cross-section shapes obtained from the literature. The measurement of scour depth in equilibrium condition for the simulations reveal the differences of 4.6%, 6.7% and 13.1% from the experimental measurements for the circular, square, and diamond pier cases, respectively. The model displayed a remarkable performance in the prediction of scour around circular and square piers where horseshoe vortices (HSVs) have a leading impact on scour progression. On the other hand, the maximum deviation was found in the case of the diamond pier where HSVs are weak and have minimum impact on the formation of local scour. Overall, the results confirm that the prediction capability of the present model is almost independent of the strength of the formed HSVs and pier cross-section shapes.