• Title/Summary/Keyword: Maximum pressure

Search Result 3,754, Processing Time 0.033 seconds

Changes of Maximum Inspiratory Pressure, Maximum Expiratory Pressure, Back Mobility by Diaphragm Stretching Technique in Patients with Low Back Pain (가로막 스트레칭 기법에 의한 허리통증 환자의 최대들숨압력과 최대날숨압력, 허리 가동성 변화 )

  • In-young Kong
    • PNF and Movement
    • /
    • v.21 no.2
    • /
    • pp.185-192
    • /
    • 2023
  • Purpose: This study aimed to confirm the effectiveness of the diaphragm stretching technique as a treatment method for low back pain by evaluating maximum inspiratory pressure, maximum expiratory pressure, and changes in back mobility in patients with low back pain. Methods: Thirty-four patients with low back pain were randomly divided into two groups: an experimental group and a control group. The diaphragm stretching technique was conducted in the experimental group, and the placebo intervention was conducted in the control group. The diaphragm stretching technique was conducted once, maintaining tension for 7 min. The placebo intervention was conducted in the same position as the diaphragm stretching technique, but with only light contact maintained without pressure. Maximum inspiratory pressure, maximum expiratory pressure, and back mobility were measured before and after the intervention, and the changes were compared and analyzed. A paired sample t-test was used to compare measurements within the group before and after the intervention. An independent t-test was used to compare the experimental and control groups. Statistical significance (α) was set at 0.05. Results: In the experimental group, maximum inspiratory pressure, maximum expiratory pressure, and back mobility increased significantly after the intervention (p < 0.05). However, there was no significant difference in the changes in all areas of the control (p > 0.05). As a result of comparative analysis of changes before and after the intervention, there were significant differences in maximum inspiratory pressure, maximum expiratory pressure, and back mobility only in the experimental group (p < 0.05). Conclusion: The diaphragm stretching technique improved maximum inspiratory pressure, maximum expiratory pressure, and back mobility compared to the placebo intervention. Therefore, the diaphragm stretching technique can be recommended as a physical therapy intervention to improve pain in patients with LBP.

Analysis of Plantar Foot Pressure in Skilled and Unskilled Player's during a Free Throw in Basketball (농구 자유투 동작 시 숙련자 및 미숙련자의 족저압력 분석)

  • Kim, Chang-Hyun;Lee, Joong-Sook;Jang, Young-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.183-191
    • /
    • 2012
  • The objective of this study was to evaluate the plantar foot pressure of skilled and unskilled players during a free throw. The experiment performed here in measured the movement route of the mean foot pressure, maximum foot pressure, and center of pressure in four event zones (ready, maximum knee flexion, release event, and maximum knee extension) for both groups while they were wearing the plantar foot pressure measurement equipment under identical conditions. The major findings are as follows. When getting ready (RD) during a free throw, the skilled player group had higher mean and maximum foot pressures, although neither variable showed significant differences statistically. For the maximum knee flexion (MF) during a free throw, the skilled player group had higher mean and maximum foot pressures, but only the mean foot pressure significantly differed statistically. For the release event (RE) during a free throw, the unskilled player group had higher mean and maximum foot pressures, but only the mean foot pressure significantly differed statistically. During the maximum knee extension (ME) of a free throw, the unskilled player group had a higher mean foot pressure, and the skilled player group had a higher maximum foot pressure. No significant correlation was found between the two groups. For the skilled player group, movement towards the center of pressure showed a stable form that moved from the rear to the front and from side to side during a free throw. For the unskilled player group, movement towards the center of pressure was unstable, which made it impossible to move from the rear to the front and from left to right.

Comparison of the Contact Area, Maximum Pressure, Maximum Average Pressure and Maximum Force between Functional Insoles and General Insoles (기능성 인솔과 일반 인솔의 발에 대한 접촉 면적, 최대 압력, 최대 평균압력 및 최대 힘 비교)

  • Lee, Su-Kyoung
    • PNF and Movement
    • /
    • v.20 no.3
    • /
    • pp.431-441
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the changes in the contact area, maximum pressure, maximum mean pressure, and maximum force of functional insoles and general insoles when walking. Methods: Foot pressure was measured by the ignition of functional insoles and general insoles on Company N shoes. The foot pressure was measured using a precision pressure distribution meter (Pedar - X mobile system, Novel, Germany). Each insole sensor contained 99 independent cells and was inserted between the foot and the shoe. A wireless Bluetooth-type program was used to measure the pressure detected by the measuring insoles. In order to eliminate adaptation and fatigue caused by wearing the guide during the experiment, sufficient rest was taken between each experiment, and the wearing order was randomly selected. Results: Functional insole significantly increased the forefoot and midfoot (medial, lateral) (p<0.05), while total foot, forefoot, and rearfoot peak pressure significantly decreased (p < 0.05) compared to the general insole. Conclusion: In the functional insole, a high contact area was measured inside, even in the middle of the foot, leading to a proper change in foot pressure. It was confirmed that the contact area was reduced and dispersion occurred well. In addition, it was found that the maximum pressure in the front and back of the entire foot was reduced, so the weight pressure dispersion in the functional insole was evenly distributed, and the maximum average pressure change was similar.

An Experimental Study on Water-Hammer Effect for Spacecraft Propulsion System (인공위성 추진계통 관로내의 수격효과에 관한 실험적 연구)

  • Kwon, Ki-Chul;Lee, Eun-Sang;Park, Sang-Min;Kang, Shin-Jae;Rho, Byung-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.288-293
    • /
    • 2001
  • This paper presents the water-hammer effect due to the rapid opening and closing of isolation valve and thruster valve in the spacecraft propulsion system. The single propellant feed system was modeled to investigate the maximum peak pressure due to the water-hammer effect. The test parameters are tank supply pressure, shape and throat length of orifice and line length. Kerosene was used as the inert simulant propellant liquid instead of hydrazine. As downstream line length after isolation valve increased from 1.5 to 2.5m, the maximum line-filling water-hammer peak pressure decreased, but the average time interval between peak pressures increased. The maximum line-filling water-hammer peak pressure with orifice was lower than without orifice, and the maximum line-filling water-hammer peak pressure with orifice at the back of isolation valve was lower than with orifice in front of isolation valve. Without orifice, the maximum water-hammer peak pressure due to the rapid opening and closing of the thruster valve was about 126% of tank supply pressure. With orifice, it decreased. As orifice throat length increased, it decreased. The maximum water-hammer peak pressure due to the rapid closing of the thruster valve with converging-diverging orifice was lower than normal orifice. It was found that the orifice as a means of pressure drop was very effective to reduce the water hammer peak pressure at the thruster valve. The results of this study can be used for the design of spacecraft liquid propulsion feed system.

  • PDF

Study on the Determination of the Maximum Injection Pressure for Groundwater Rechargement (지하수 함양시 최대 주입압력 결정을 위한 연구)

  • Choi, Jin O;Jeong, Hyeon Cheol;Chung, Choong Ki;Kim, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.501-508
    • /
    • 2022
  • Required essential technique is to determine the maximum recharge pressure in the well with condition of non-ground failure for the recovery of the groundwater. Based on the classical soil mechanics, the maximum recharge pressure was estimated with the numerical anlaysis and laboratory triaxial test. In the numerical analysis, the maximum recharge pressure is defined as the ground failure stress. The ground failure of the sand was defined as the piping and the one of the caly was to the undrained failure by the confined pressure increment. In the triaxial test, the recharge pressure in the ground was modified by the back pressure in the specimen. In case of sand, the volume strain was dramatically increased at the 93 % of the maximum back pressure, same meaning of the 0 effective stress state. In case of clay, the only radial volume strain was to reached 1.5 % without failure. Therefore, The maximum recharge pressure could be determined with the numerical analysis and triaxial test.

Wind load combinations and extreme pressure distributions on low-rise buildings

  • Tamura, Yukio;Kikuchi, Hirotoshi;Hibi, Kazuki
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.279-289
    • /
    • 2000
  • The main purpose of this paper is to demonstrate the necessity of considering wind load combinations even for low-rise buildings. It first discusses the overall quasi-static wind load effects and their combinations to be considered in structural design of low-rise buildings. It was found that the maximum torsional moment closely correlates with the maximum along-wind base shear. It was also found that the instantaneous pressure distribution causing the maximum along-wind base shear was quite similar to that causing the maximum torsional moment, and that this asymmetric pressure pattern simultaneously accompanies considerable across-wind and torsional components. Secondly, the actual wind pressure distributions causing maximum quasi-static internal forces in the structural frames are conditionally sampled and their typical pressure patterns are presented.

Explosion Characteristics of Nonhomogeneous LPG-Air Mixtures (농도 불균일 LPG-공기 혼합기체의 폭발특성)

  • 배정일;김영수;서용칠;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.114-119
    • /
    • 1993
  • The explosion characteristics of nonhomogeneous LPG-Air mixtures was measured in a cylindrical vessel and a pipe. The maximum explosion pressure, the maximum rate of explosion pressure rise, and the flame propagation velocity were measured and compared with that of homogeneous explosion by changing the effective factors on the explosion of nonhomogeneous mixtures such as pressure difference, effusion time and delay time. Explosion was occured even in the lower concentration than the lean flammability limit of mixture. The maximum explosion pressure was increased with increase of LPG concentration, however, the maximum explosion pressure rise was not in the nonhomogeneous explosion. An d the flame propagation velocity was decreased with nonhomogeneity, however, the maximum explosion pressure was always above 0.7kg/$\textrm{cm}^2$.

  • PDF

A Study on Risk Assessment of Methyl Ethyl Ketone Peroxide (메틸에틸케톤 퍼옥사이드의 위험성평가에 관한 연구)

  • Mok, Yun-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.34-39
    • /
    • 2005
  • To evaluate characteristics of explosion hazard of Methyl Ethyl Ketone Peroxide, MCPVT was used for this study. In result maximum explosion pressure and maximum explosion pressure rising velocity of MEK-PO were $12.1kgf/cm^2\;and\;106.81kgf/cm^2/s$. As a result or adding metal powder to estimate hazard of explosion, the maximum explosion pressure and maximum explosion pressure rising velocity according to adding Fe powder in MEK-PO increased. In opposite, those decreased resulting in adding Ca powder in MEK-PO.

The Effects of Thoracic Mobilizing and Stretching Exercise on Maximal Inspiratory Pressure and Maximal Expiratory Pressure in Healthy Adults (건강한 성인에게 가슴가동운동과 스트레칭운동이 최대들숨압 및 최대날숨압에 미치는 효과)

  • Kim, Se-Yeon;Hwang, Young-In;Kim, Ki-Song
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the effect of chest mobilization and stretching exercises on maximal inspiratory pressure and maximal expiratory pressure in healthy adults who use computers for extended periods of time each day due to coronavirus disease 2019. Methods: Twenty-five healthy adults in their 20s and without respiratory disease (15 female, 10 male) took part in this study. Two types of thoracic mobilizing exercises using a Theraband and three types of stretching exercises using a foam roller were performed. Maximum inspiratory pressure and maximum expiratory pressure were measured three times each before and after the interventions. In terms of statistical methods, the maximum inspiratory pressure due to chest mobility and stretching was compared with the maximum expiratory pressure using parametric paired t-test and non-parametric Wilcoxon signed-rank test. Results: Maximum inspiratory pressure (p = .012) and maximum expiratory pressure (p = .006) showed significant differences before and after chest mobilization exercise and stretching among the participants. Conclusion: The results of this study suggest that chest mobilization and stretching exercises are effective exercise methods for improving maximal inspiratory and expiratory pressure. They suggest that these exercises can prevent respiratory muscle weakness and improve aerobic fitness in healthy people as well as those in need of cardiorespiratory physiotherapy.

Changes in the Respiratory Function of Stroke Patients on the Ground and Immersed under Water (지상과 수중에서 뇌졸중 환자의 호흡기능 변화)

  • Kim, Ju-Seung;Park, Min-Chull
    • PNF and Movement
    • /
    • v.16 no.3
    • /
    • pp.389-395
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate whether the respiratory function of patients with stroke was different on the ground and under water. Methods: We recruited 14 adults who had experienced a stroke (12 male, 2 female) for our study. We measured forced vital capacity, forced expiratory volume at one second, maximum inspiratory pressure, and maximum expiratory pressure when the participants breathed on the ground and under water. On the ground, the participants were safely supported using a table and chair and were measured in a standing posture. For measuring under water, the participants were immersed in water in a standing position to clavicle height. The participants were measured while standing, and the assistant supported them when they needed help. The collected data were analyzed by a paired t-test. Results: Forced vital capacity and forced expiratory volume at one second were significantly lower in water than on the ground when breathing at maximum. Maximum inspiratory pressure was not significantly different when standing on the ground or in water, but maximum expiratory pressure was significantly higher in water than on the ground. Conclusion: It has been confirmed that the hydrostatic pressure affecting stroke patients immersed in water affects the forced expiratory volume at one second while reducing the forced vital capacity and increasing the maximum expiratory pressure.