• Title/Summary/Keyword: Maximum power transfer

Search Result 320, Processing Time 0.032 seconds

Immobilization of Glucose Oxidase using Branched Polyethyleneimines of Various Molecular Weights for Glucose Based Biofuel Cell (글루코스 기반 바이오연료전지를 위한 다양한 분자량의 폴리에틸렌이민을 이용한 글루코스 산화효소 고정화)

  • Ahn, Yeonjoo;Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.693-697
    • /
    • 2016
  • In this study, we fabricated the catalysts for enzymatic biofuel cell anode with carbon nanotube (CNT), glucose oxidase (GOx) and various molecular weights branched poly(ethyleneimine)(bPEI) and terephthalaldehyde (TPA) as cross-linker. In case of GOx/bPEI/CNT using only physical entrapments for immobilization, the molecular weights of bPEI didn't affect to electrochemical performances and long term stability. but that of the catalysts cross linked via TPA (TPA[GOx/bPEI/CNT]) improved and the mass transfer of glucose to FAD was interrupted as increasing of the bPEI's molecular weights. Furthermore, it was confirmed that the optimum molecular weight of PEI for TPA [GOx/bPEI/CNT]) structure is 750k that showed marvelous high performance (maximum power density of $0.995mW{\cdot}cm^{-2}$).

Implementation of Data Protocol Conversion System for High-end CMOS Image Sensors Equipped with SMIA CCP2 Serial Interface (SMIA CCP2 직렬 인터페이스를 가지는 고기능 이미지 센서를 위한 데이터 프로토콜 변환 시스템의 구현)

  • Kim, Nam-Ho;Park, Hyun-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.753-758
    • /
    • 2009
  • Recently the high-end CMOS image sensors are developed, conforming to the SMIA CCP2 specification, which is a high-speed low-power serial interface based on LVDS technology. But this kind of technology trend makes the existing equipments are no longer useful, although their capability is still good enough to handle the recent image sensors if there was no interfacing problem. In this paper, we propose and realize a data protocol conversion system that translates the SMIA CCP2 serial signals into the existing 10-bit parallel signals. The proposed system is composed of a de-serializer and a FPCA chip, and thus can be constructed on a small PCB which enables easy integration between the existing equipments and the new high-end image sensors. Besides, the maximum transfer rate by the SMIA specification is also achieved on the implemented system. So it is expected that the implemented system can be used as a general-purpose protocol converter in a variety of sensor-related application fields.

Effect of Finite Element Analysis Parameters on Weld Residual Stress of Dissimilar Metal Weld in Nuclear Reactor Piping Nozzles (유한요소 해석변수가 원자로 배관 노즐 이종금속용접부의 용접잔류응력에 미치는 영향)

  • Soh, Na-Hyun;Oh, Gyeong-Jin;Huh, Nam-Su;Lee, Sung-Ho;Park, Heung-Bae;Lee, Seung-Gun;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.8-18
    • /
    • 2012
  • In early constructed nuclear power plants, Ni-based Alloys 82/182 had been widely used for dissimilar metal welds (DMW) as a weld filler metal. However, Alloys 82/182 have been proven to be susceptible to primary water stress corrosion cracking (PWSCC) in the nuclear primary water environment. The formation of crack due to PWSCC is also influenced by weld residual stresses. Thus, the accurate estimation of weld residual stresses of DMW is crucial to investigate the possibility of PWSCC and instability behaviors of crack due to PWSCC. In this context, the present paper investigates weld residual stresses of nuclear reactor piping nozzles based on 2-D axi-symmetric finite element analyses based on layer-based approach using maximum molten bead temperature. In particular, the effect of analysis parameters, i.e., a thickness of weld layer, an initial molten bead temperature, convection heat transfer coefficient, and geometric constraints on predicted weld residual stresses was investigated.

Development and Performance Test of a l00hp HTS Motor

  • Sohn, M.H.;Baik, S.K.;Lee, E.Y.;Kwon, Y.K.;Yun, M.S.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Ryu, K.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.27-31
    • /
    • 2004
  • This paper describes the development and fabrication of a high temperature superconducting motor which consists of HTS rotor and air-core stator. The machine was designed for the rated power of 100hp at 1800 rpm. The HTS field windings are composed of the double-pancake coils wound with AMSC's SUS-reinforced Bi-2223 tape conductor. These were assembled on the support structure and fixed by a bandage of glass-fiber composite. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. The rotor assembly was tested independently at the stationary state and combined with stator. Characteristic parameters such as reactances, inductances, and time constants were determined to obtain a consistent overview of the machine operation properties. This motor has met all design parameters by demonstrating HTS field winding, cryogenic refrigeration systems and an air-core armature winding cooled with air. The HTS field winding could be cooled down below 30K. No-load test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction, and basic experimental test results of the 100hp HTS machine.

Enhancing Electricity Generation Using a Laccase-Based Microbial Fuel Cell with Yeast Galactomyces reessii on the Cathode

  • Chaijak, Pimprapa;Sukkasem, Chontisa;Lertworapreecha, Monthon;Boonsawang, Piyarat;Wijasika, Sutthida;Sato, Chikashi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1360-1366
    • /
    • 2018
  • The fungi associated with termites secrete enzymes such as laccase (multi-copper oxidase) that can degrade extracellular wood matrix. Laccase uses molecular oxygen as an electron acceptor to catalyze the degradation of organic compounds. Owing to its ability to transfer electrons from the cathodic electrode to molecular oxygen, laccase has the potential to be a biocatalyst on the surface of the cathodic electrode of a microbial fuel cell (MFC). In this study, a two-chamber MFC using the laccase-producing fungus Galactomyces reessii was investigated. The fungus cultured on coconut coir was placed in the cathode chamber, while an anaerobic microbial community was maintained in the anode chamber fed by industrial rubber wastewater and supplemented by sulfate and a pH buffer. The laccase-based biocathode MFC (lbMFC) produced the maximum open circuit voltage of 250 mV, output voltage of 145 mV (with a $1,000{\Omega}$ resistor), power density of $59mW/m^2$, and current density of $278mA/m^2$, and a 70% increase in half-cell potential. This study demonstrated the capability of laccase-producing yeast Galactomyces reessii as a biocatalyst on the cathode of the two-chamber lbMFC.

Thermal and Stress Analysis of Power IGBT Module Package by Finite Element Method (유한요소법에 의한 대전력 IGBT 모듈의 열.응력해석)

  • 김남균;최영택;김상철;박종문;김은동
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.23-33
    • /
    • 1999
  • A finite element method was employed fort thermal and stress analyses of an IGBT module of 3-phase full bridge. The effect of material parameters such as substrate material, substrate area, solder thickness on the temperature and stress distributions of the module packages has been investigated. Thermal analysis results have also been compared by setting of boundary conditions such as equivalent heat transfer coefficient or constant temperature at a base metal surface of the package. The increase of ceramic substrate area up to 3 times does little contribution to the reduction(8.9%) of thermal resistance, while contributed a lot to the reduction(60%) of thermal stress. Thicker solder resulted in higher thermal resistance but did slightly reduced thermal stresses. It is revealed by the stress analysis that maximum stress was induced at the region of copper pads which are bonded with ceramic substrate.

  • PDF

A Free Agent Algorithm for Min-Cut Problem (최소절단 문제의 자유계약 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.27-33
    • /
    • 2019
  • The min-cut problem that decides the maximum flow in a complex network flows from source(s) to sink(t) is known as a hard problem. The augmenting path algorithm divides into single path and decides the bottleneck point(edge), but the min-cut section to be decide additionally. This paper suggests O(n) time complexity heuristic greedy algorithm for the number of vertices n that applies free agent system in a pro-sports field. The free agent method assumes $N_G(S),N_G(T)$vertices among $v{\in}V{\backslash}\{s,t\}$to free agent players, and this players transfer into the team that suggest more annual income. As a result of various networks, this algorithm can be finds all of min-cut sections and min-cut value for whole cases.

Electricity Production by Metallic and Carbon Anodes Immersed in an Estuarine Sediment (퇴적토에 담지된 금속 및 탄소전극에 의한 전기 생산 특성)

  • Song, Hyung-Jin;Rhee, In-Hyoung;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3731-3739
    • /
    • 2009
  • One-chambered sediment cells with a variety of anodic electrodes were tested for generation of electricity. Material used for anodes was iron, brass, zinc/iron, copper and graphite felt which was used for a common cathode. The estuarine sediment served as supplier of oxidants or electron-producing microbial habitat which evoked electrons via fast metal corrosion reactions or a complicated microbial electron transfer mechanism, respectively. Maximum power density and current density were found to be $6.90\;W/m^2$ (iron/zinc) and $7.76\;A/m^2$ (iron), respectively. Interestingly, copper wrapped with carbon cloth produced better electric performance than copper only, by 60%, possibly because the cloth not only prevented rapid corrosion on the copper surface by some degrees, but also helped growing some electron-emitting microbes on its surface. At anodes oxidation reduction potential(ORP) was kept to be stationary over time except at the very initial period. The pH reduction in the copper and copper/carbon electrodes could be a sign of organic acid production due to a chemical change in the sediment. The simple estimation of interfacial, electrical resistances of electrodes and electrolyte in the sediment cell that a key to the electricity generation should be in how to control corrosion rate or microbial electron transfer activity.

Performance Evaluation of Biofuel cell using Benzoquinone Entrapped Polyethyleneimine-Carbon nanotube supporter Based Enzymatic Catalyst (벤조퀴논 포집 폴리에틸렌이민-탄소나노튜브 지지체 기반 효소촉매의 바이오연료전지로서의 성능평가)

  • Ahn, Yeonjoo;Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.258-263
    • /
    • 2017
  • In this study, we synthesized biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of p-benzoquinone (BQ) that was considered anodic catalysts of enzymatic biofuel cell (EBC). For doing this, PEI/CNT supporter was bonded with BQ by physical entrapping method stemmed from electrostatic attractive force ([BQ/PEI]/CNT). In turn, GOx moiety was further immobilized on the [BQ/PEI]/CNT to form GOx/[BQ/PEI]/CNT catalyst. This catalyst has a special advantage in that the BQ that has been usually dissolved into electrolyte was immobilized on supporter. According to the electrochemical analysis, maximum current density of the GOx/[BQ/PEI]/CNT catalyst was 1.9 fold better than that of the catalyst that did not entrap BQ with the value of $34.16{\mu}A/cm^2$, verifying that catalytic activity of the catalyst was enhanced by adoption of BQ. Also, when it was used as anodic catalyst of the EBC, its maximum power density was 1.2 fold better than that of EBC using the catalyst that did not entrap BQ with the value of $0.91mW/cm^2$. Based on such results, it turned out that the GOx/[BQ/PEI]/CNT catalyst was promising and viable as anodic catalyst of EBC.

An Experimental Study on Performance of Vapor Compression Refrigeration Cycle with Al2O3 nano-particle (Al2O3 나노 입자를 적용한 증기 압축 냉동 사이클의 성능)

  • Kim, Jeongbae;Lee, Kyu-Sun;Lee, Geunan
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.124-129
    • /
    • 2015
  • An experimental study was performed estimating COP(Coefficient of Performance) of air-conditioning cycle using inverter scroll compressor with and without $Al_2O_3$ nano particle. All experiments were done for various compressor speeds from 1000~4000 rpm and used the inverter controller called CANDY to change the compressor rpm. The air-conditioning cycle components in the apparatus were used as same with components of YF hybrid car. To estimate the COP, this study measured the temperature and pressure at inlets and outlets of compressor, condenser, and evaporator. And also measured the compressor input power using Powermeter. Through the experiments, the maximum error to estimate COP was shown about ${\pm}6.09%$ at 3500rpm. The COP of refrigeration cycle with $Al_2O_3$ nano-particle was similar with that of the base cycle without nano-particle between 1000~3000 rpm of the compressor speed. But, This study showed that the COP of the cycle with $Al_2O_3$ over 3000 rpm of the compressor speed was higher than that of the base cycle due to the higher heat transfer rate increased in the evaporator from the higher oil flow rate inside the cycle as well known. Those results can be used the basic and fundamental data to design the air-conditioning cycle using inverter scroll compressor with $Al_2O_3$ nano particle.