• Title/Summary/Keyword: Maximum power tracking efficiency

Search Result 191, Processing Time 0.033 seconds

Test results of an inverter system for 750kW gearless wind turbine (750kW gearless 풍력발전기 인버터 시험)

  • Son, Yoon-Gyu;Suh, Jae-Hak;Kwon, Sei-Jin;Jang-Seung-Duck;Oh, Jong-Seok;Hwang-Jin-Su;Kang, Sin-Il;Park, Ga-Woo;Kwon, O-Jung;Chung-Chin-Hwa;Han-Kyung-Seop;Chun-Chung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.59-63
    • /
    • 2005
  • The 800-kW PM (permanent magnet) synchronous generator is developed as a wind power generator. The matching converter is designed to control the torque and power depending on the wind speed regime. The generator starts to generate the power at the speed of 9 rpm and the rated output is generated at the speed of 25 rpm. The rated output power of an inverter is 750 kW when the PM synchronous generator is delivering 800 kW to the inverter. The inverter is specially designed to perform the maximum power point tracking (MPPT) at the low wind speed regime that is typical wind environment in Korea. The inverter test was done with a 2 MW M-G system at KERI (Korea Electric Research Institute). The M-G set has a 2 MW motor driver and a 38:1 gear to match the speed between the motor and the PM generator. The torque simulating the wind is applied to the PM generator by a DC motor. The test results show the inverter efficiency of $94.3\%$ at the rated power generating condition. The measured values show that the MPPT algorithm is working well. Overall reliability will be verified through the long-term site test.

  • PDF

Grid-Connected Dual Stator-Winding Induction Generator Wind Power System for Wide Wind Speed Ranges

  • Shi, Kai;Xu, Peifeng;Wan, Zengqiang;Bu, Feifei;Fang, Zhiming;Liu, Rongke;Zhao, Dean
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1455-1468
    • /
    • 2016
  • This paper presents a grid-connected dual stator-winding induction generator (DWIG) wind power system suitable for wide wind speed ranges. The parallel connection via a unidirectional diode between dc buses of both stator-winding sides is employed in this DWIG system, which can output a high dc voltage over wide wind speed ranges. Grid-connected inverters (GCIs) do not require booster converters; hence, the efficiency of wind energy utilization increases, and the hardware topology and control strategy of GCIs are simplified. In view of the particularities of the parallel topology and the adopted generator control strategy, we propose a novel excitation-capacitor optimization solution to reduce the volume and weight of the static excitation controller. When this excitation-capacitor optimization is carried out, the maximum power tracking problem is also considered. All the problems are resolved with the combined control of the DWIG and GCI. Experimental results on the platform of a 37 kW/600 V prototype show that the proposed DWIG wind power system can output a constant dc voltage over wide rotor speed ranges for grid-connected operations and that the proposed excitation optimization scheme is effective.

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.

MPPT and Yawing Control of a New Horizontal-Axis Wind Turbine with Two Parallel-Connected Generators (수평 병렬형 풍력 발전기의 요각 및 MPPT 제어)

  • Lee, Kook-Sun;Choy, Ick;Cho, Whang;Back, Ju-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • Commonly used horizontal-axis wind turbines (HAWT) have the following structure: two or three blades, a nacelle which contains power converting equipments, generators, and a tower which supports the nacelle. The generated power is transmitted from the nacelle to the ground. Due to this structure, the power transmission lines are twisted when the nacelle is yawing. Thus, slip ring or additional yaw control mechanism is required. We propose a new structure of HAWT which is free of this transmission line problem. Moreover, the size of inverter can be reduced since two generators are connected in parallel in our mechanism so that power is distributed. A controller for yawing is developed so that it works in harmony with the controller for power generation. A MPPT (Maximum Power Point tracking) algorithm is implemented for the proposed system and efficiency of the system is validated by simulation.

Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink (MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계)

  • Gebreslassie, Maru Mihret;kim, Min;Byun, Gi-sig;Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

Beam line design and beam transport calculation for the μSR facility at RAON

  • Pak, Kihong;Park, Junesic;Jeong, Jae Young;Kim, Jae Chang;Kim, Kyungmin;Kim, Yong Hyun;Son, Jaebum;Lee, Ju Hahn;Lee, Wonjun;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3344-3351
    • /
    • 2021
  • The Rare Isotope Science Project was launched in 2011 in Korea toward constructing the Rare isotope Accelerator complex for ON line experiments (RAON). RAON will house several experimental systems, including the Muon Spin Rotation/Relaxation/Resonance (μSR) facility in High Energy Experimental Building B. This facility will use 600-MeV protons with a maximum current of 660 pμA and beam power of 400 kW. The key μSR features will facilitate projects related to condensed-matter and nuclear physics. Typical experiments require a few million surface muons fully spin-polarized opposite to their momentum for application to small samples. Here, we describe the design of a muon transport beam line for delivering the requisite muon numbers and the electromagnetic-component specifications in the μSR facility. We determine the beam-line configuration via beam-optics calculations and the transmission efficiency via single-particle tracking simulations. The electromagnet properties, including fringe field effects, are applied for each component in the calculations. The designed surface-muon beamline is 17.3 m long, consisting of 2 solenoids, 2 dipoles affording 70° deflection, 9 quadrupoles, and a Wien filter to eliminate contaminant positrons. The average incident-muon flux and spin rotation angle are estimated as 5.2 × 106 μ+/s and 45°, respectively.

The PV MPPT & Charge and Discharge Algorithm for the Battery Included Solar Cell Applications (배터리 내장형 초소형 태양광 장치용 PV MPPT 및 충방전 제어 알고리즘)

  • Kim, Seung-Min;Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lae, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.69-75
    • /
    • 2013
  • To increase the efficiency of the photovoltaic, almost photovoltaic appliances are controlled by Maximum Power Point Tracking(MPPT). Existing most of the PV MPPT techniques have used power which multiplies sensed output current and voltage of the solar cell. However, these algorithms are unnecessarily complicated and too expensive for small and compact system. The other hand, the proposed MPPT technique is only one sensing of the MPPT converter's output current, so there is no need to insert another sensors of battery side. Therefore, this algorithm is simpler compared to the traditional approach and is suitable for low power solar system. Further, the novel proper charge/discharge algorithm for the battery with PV MPPT is developed. In this algorithm, there is CC battery charge mode and load discharge mode of the PV cell & battery dual. Also we design current control to regulate allowable current during the battery charging. The proposed algorithm will be applicable to battery included solar cell applications like solar lantern and solar remote control car. Finally, the proposed method has been verified with computer simulation.

A Real-Time Simulation Method for Stand-Alone PV Generation Systems using RTDS (RTDS를 이용한 단독운전 태양광 발전시스템의 실시간 시뮬레이션)

  • Kim, Bong-Tae;Lee, Jae-Deuk;Park, Min-Won;Seong, Ki-Chul;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.190-193
    • /
    • 2001
  • In order to verify the efficiency or availability and stability of photovoltaic(PV) generation systems, huge system apparatuses are needed, in general, in which an actual size of solar panel, a type of converter system and some amount of load facilities should be installed in a particular location. It is also hardly possible to compare a Maximum Power Point Tracking (MPPT) control scheme with others under the same weather and load conditions in an actual PV generation system. The only and a possible way to bring above-mentioned problem to be solved is to realize a transient simulation scheme for PV generation systems using real weather conditions such as insolation and surface temperature of solar cell. The authors, in this paper, introduces a novel simulation method, which is based on a real-time digital simulator (RTDS), for PV generation systems under the real weather conditions. Firstly, VI characteristic equation of a solar cell is developed as an empirical formula and reconstructed in the RTDS system, then the real data of weather conditions are interfaced to the analogue inputs of the RTDS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme in this paper. The results shows that the cost effective verifying for the efficiency or availability and stability of PV generation systems and the comparison research of various control schemes like MPPT under the same real weather conditions are possible.

  • PDF

A Low-Voltage Self-Startup DC-DC Converter for Thermoelectric Energy Harvesting (열에너지 수확을 위한 저전압 자율시동 DC-DC 변환기)

  • Jeong, Hyun-Jin;Kim, Dong-Hoon;Kim, Hoe-Yeon;Yoon, Eun-Jung;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.520-523
    • /
    • 2016
  • This paper describes a DC-DC converter with MPPT control for thermoelectric energy harvesting. The designed circuit converts low voltage harvested from a thermoelectric generator into higher voltage for powering a load. A start-up circuit supplies VDD to a controller, and the controller turns on and off a NMOS switch of a main-boost converter. The converter supplies the boosted voltage to the load through the switch operation. Bulk-driven comparators can do the comparison under low voltage condition and are used for voltage regulation. Also, bulk-driven comparators raise system's efficiency. A peak conversion efficiency of 76% is achieved. The proposed circuit is designed in a 0.35um CMOS technology and its functionality has been verified through simulations. The designed chip occupies $933um{\times}769um$.

  • PDF

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers (물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보)

  • Bae, Mi-Seon;Jeong, Min Ji;Chang, Hyo Sik;Yang, Tae-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.