• Title/Summary/Keyword: Maximum power

Search Result 6,087, Processing Time 0.035 seconds

A study of Maximum-Power Control Simulation for PMA-SynRM (PMA-SynRM의 최대출력제어를 위한 시뮬레이션 연구)

  • Pyun, Kyung-Bum;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.103-105
    • /
    • 2009
  • This paper presents the maximum-power control simulation for PMA-SynRM. For maximum power, the maximum torque / current control method is conducted in constant-torque range and flux-weakening control method is conducted in constant-power range. For considering the nonlinear characteristics of inductance, machine constant is determined by FEM. Finally, experiment is conducted to calculate the efficiency.

  • PDF

Backstepping Control of a Buck-Boost Converter in an Experimental PV-System

  • Vazquez, Jesus R.;Martin, Aranzazu D.
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1584-1592
    • /
    • 2015
  • This paper presents a nonlinear method to control a DC-DC converter and track the Maximum Power Point (MPP) of a Photovoltaic (PV) system. A backstepping controller is proposed to regulate the voltage at the input of a buck-boost converter by means of Lyapunov functions. To make the control initially faster and avoid local maximum, a regression plane is used to estimate the reference voltages that must be obtained to achieve the MPP and guarantee the maximum power extraction, modifying the conventional Perturb and Observe (P&O) method. An experimental platform has been designed to verify the validity and performance of the proposed control method. In this platform, a buck-boost converter has been built to extract the maximum power of commercial solar modules under different environmental conditions.

The Analysis of Environmental Effects on Maximum Output Power Change of Crystalline Silicon Photovoltaic Module (결정질 실리콘 태양전지모듈의 최대 출력특성 변화에 영향을 미치는 환경요인)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Ji-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.12-13
    • /
    • 2007
  • In this paper, we studied the analysis of environmental effects on maximum output power change of crystalline silicon photovoltaic module. During the test period, there was a 5% reduction of maximum output power on an average. And the degree of output power uniformity became better compared to initial value. Using climate data like rain, snow and dust, we tried to find the reasons for maximum power fluctuation. The surface of PV module was monitored using microscope and infrared camera to study temperature distribution. The further analysis is described in the following paper.

  • PDF

A Variable Step Size Incremental Conductance MPPT of a Photovoltaic System Using DC-DC Converter with Direct Control Scheme

  • Cho, Jae-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.74-82
    • /
    • 2013
  • This paper presents a novel maximum power point tracking for a photovoltaic power (PV) system with a direct control plan. Maximum power point tracking (MPPT) must usually be integrated with photovoltaic (PV) power systems so that the photovoltaic arrays are able to deliver maximum available power. The maximum available power is tracked using specialized algorithms such as Perturb and Observe (P&O) and incremental Conductance (indCond) methods. The proposed method has the direct control of the MPPT algorithm to change the duty cycle of a dc-dc converter. The main difference of the proposed system to existing MPPT systems includes elimination of the proportional-integral control loop and investigation of the effect of simplifying the control circuit. The proposed method thus has not only faster dynamic performance but also high tracking accuracy. Without a conventional controller, this method can control the dc-dc converter. A simulation model and the direct control of MPPT algorithm for the PV power system are developed by Matlab/Simulink, SimPowerSystems and Matlab/Stateflow.

Comparison of MPPT Based on Fuzzy Logic Controls for PMSG

  • Putri, Adinda Ihsani;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.285-286
    • /
    • 2011
  • Maximum Power Point Tracker (MPPT) is the big issue in generating power based on Wind Energy Conversion System. In case of unknown turbine characteristic, it is useful to implement MPPT based on fuzzy logic control. This kind of control is able to find the value of duty cycle to meet maximum power point at particular wind speed. There are many methods to develop MPPT based fuzzy logic controls. In this paper, two of the methods are compared both at low and high fluctuating wind speed.

  • PDF

Study on the Armature Winding Design of Interior Permanent Magnet Synchronous Motor for Maximum Power (최대 출력 확보를 위한 매입형 영구자석 전동기의 전기자 권선설계)

  • Lim, Ho-Kyoung;Lee, Jeong-Jong;Lee, Tae-Guen;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.875_876
    • /
    • 2009
  • Recently, Interior Permanent Magnet Synchronous Motor(IPMSM) is widely used in the industry applications such as power train for hybrid vehicles and compressor motors of air-conditioner due to its high power density and wide speed range. There are some ways for confirming of maximum power in IPMSM. However, This paper suggests that there is a way about making sure maximum power by reducing turn numbers of armature winding. Setting up the voltage equation through the equivalent circuit and vector diagram of IPMSM first, and then estimating the parameter and power of IPMSM by changing the turn numbers of armature winding and voltage. In order to satisfy output power, the turn numbers of armature winding is changed by using the characteristic analysis, and then checking whether secure maximum power or not.

  • PDF

A hybrid maximum power tracker for a photovoltaic/wind hybrid power system (태양광/풍력 복합발전 시스템의 최대출력제어기 설계)

  • 정상식;김시경;정영석;유권종;송진수
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.134-137
    • /
    • 1998
  • In this paper, a hybrid maximum power tracker for a photovoltaic/wind hybrid power system is proposed. In the hybrid system, a direct interfacing the wind power system to the photovoltaic system gives the problems of voltage fluctuations, poor maximum power tracking, and harmonics generation associated with the random wind speed, the random solar irradiation and the pulsating torque came from the wind turbine synchronous generator and photovoltaic. To overcome these problems, a wind side DC/DC converter are proposed employing a star/delta transformer interconnected between the wind turbine side and the photovoltaic side. The control objective for each dc/dc converter is to extract maximum power from each different photovoltaic system and wind system, and transfer two different powers to the inverter and load.

  • PDF

A Study on the Development of Power Transfer Capability Calculation Algorithm Considering Initial Maximum Power Transfer Capability (초기최대수송능력을 고려한 수송능력산정 알고리즘의 개발에 관한 연구)

  • Kim, Yong-Ha;Lee, Bum;Moon, Jung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2003
  • This paper presents a power transfer capability calculation algorithm considering initial maximum power transfer capability. In this method initial maximum power transfer capability is calculated first. Then, the initial value of active power outputs of generators is gotten for power transfer capability calculation. The proposed method is applied to IEEE-24 Reliability Test System and the results show the effectiveness of the method.

Design of a Vibration Energy Harvesting Circuit With MPPT Control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2457-2464
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using a piezoelectric device is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the electric power-voltage characteristic of a piezoelectric device to deliver the maximum power to load. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a full-wave rectifier circuit connected to the piezoelectric device output and delivers the maximum available power to load. The proposed vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. Simulation results show that the maximum power efficiency of the designed circuit is 91%, and the chip area except pads is $700{\mu}m{\times}730{\mu}m$.

Design of Vibration Harvesting Circuit using the MPPT control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yun, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.392-395
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using the piezoelectric element has been designed. MPPT (maximum power point tracking control) control function has been implemented to deliver the maximum power to the load by using the electric power-voltage characteristic of the piezoelectric element. The designed MPPT circuit traces the maximum power point by sampling periodically the open circuit voltage of the full wave rectifier circuit and delivers the maximum available power to the load. The vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. The maximum power efficiency is 91%, and the chip area except pads is $1,100{\mu}m{\times}730{\mu}m$.

  • PDF