• Title/Summary/Keyword: Maximum net work

Search Result 71, Processing Time 0.028 seconds

Effects of the Wire Net Composition on Flexural Properties of Sawdustboard (철강구성(鐵鋼構成)이 톱밥보오드의 휨성질(性質)에 미치는 영향(影響))

  • Lee, Phil-Woo;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.67-72
    • /
    • 1985
  • To improve the bending strength of sawdustboard, verious resin contents of 10, 13, 16, and 19% were applied to the thin shell (face layer) composed with wire net or not. The shell effect of sawdust and wire net composition formed with core sawdustboard were evaluated. Forcusing on the effects of wire net composition and noncomposition including a comparison with chipboard and veneer complyboard, bending properties (Modulus of rupture (MOR), Modulus of elasticity (MOE), Stress at proportional limit ($S_{pl}$). Work to maximum load ($W_{ml}$))were analyzed and discussed. 1. In modulus of rutpute, veneer comply was the highest (621.5 kg/$cm^2$), and next decreasing order was wire net composition (159.1 kg/$cm^2$), chipboard (81.75 kg/$cm^2$), and wire net noncomposition (76.21 kg/$cm^2$) as in modulus of elasticity, work to maximum load, except for stress at proportional limit. 2. The highly significant effects were shown in both wire net composition and noncomposition, at the same time wire net composition exceeded two times of noncomposition throughout resin contents in bending properties. Chipboard was similar to the mean or 16% resin content in noncomposirion. 3. Every board in wire net composition above 10% resin content was beyond 100 kg/$cm^2$ in MOR, minimum allowable strength for structural use according to KS F 3104. In conclusion, the feasibility for improving the bending strength of weak sawdustboard by wire net composed shell was offered.

  • PDF

Study on Organic Rankine Cycle (ORC) for Maximum Power Extraction from Low-Temperature Energy Source (저온 열원으로부터 최대 동력을 생산하기 위한 유기랭킨사이클(ORC)에 관한 연구)

  • Kim, Kyoung-Hoon;Han, Chul-Ho;Kim, Gi-Man
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.73-79
    • /
    • 2011
  • ORC(organic Rankine cycle) has potential of reducing consumption of fossil fuels and has many favorable characteristics to exploit low-temperature heat sources. This work analyzes performance of ORC with superheating using low-temperature energy sources in the form of sensible energy. Maximum mass flow rate of a working fluid relative to that of a source fluid is considerd to extract maximum power from the sources. Working fluids of R134a, $iC_4H_{10}$ and $C_6C_6$, and source temperatures of $120^{\circ}C$, $200^{\circ}C$ and $300^{\circ}C$ are considered in this work. Results show that for a fixed source temperature thermal efficiency increases with evaporating temperaure, however net work per unit mass of source fluid has a maximum with respect to the evaporating temperature in the range of low source temperature. Results also show that the maximum power extraction is possible with R134a for the source temperature of $120^{\circ}C$, with $iC_4H_{10}$ for $200^{\circ}C$, and with $C_6C_6$ for $300^{\circ}C$.

Study on the Thermal Characteristics of Organic Rankine Cycles for Use of Low-Temperature Heat Source (저온열원 활용을 위한 유기랭킨사이클의 열적 특성에 관한 연구)

  • Jin, Jae-Young;Kim, Kyoung-Hoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.191-194
    • /
    • 2011
  • Low-grade waste heat has generally been discarded in industry due to lack of efficient recovery methods. In recent years, organic Rankine cycle(ORC) has become a field of intense research and appears as a promising technology for conversion of heat into useful work of electricity. In this work thermodynamic performance of ORC with superheating of vapor is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the evaporating temperature on the characteristics of the system such as maximum possible work extraction from the given source, volumetric flow rate per 1 kW of net work and quality of the working fluid at turbine exit as well as thermal efficiency.

  • PDF

A Study on the Tension of a Purseline in the Process of Catch of the Purse Seine Fishing Methods-I -Model Experiment on the Tension of a Purseline by Net Shapes- (선망어법의 어획과정에 있어서 죔줄의 장력-I -망형별 죔줄의 장력에 관한 모형실험-)

  • 박정식
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • The north-west sea area of Cheju Island is where originate two layer current in the summer season. The case of the fishing operations in this sea area is almost impossible for normal expansion of the net gear for shooting net, and is happened to be frequent occasions for rise of tension suddenly in purseline by changes of the net shapes in the operation. Therefore, the safety of the operations is often obstructed by the above mentioned. In connection with the above, model experiments on the purse seine in the circulating water tank was carried out in comparison and analysis on the changes of tension in the pruseline by deformation of purse seine in the sea area of two layer current. THe results obtained are as follows;In the case of the required time for pursing of 20 minutes in the no current set, the increasing curve for tension of purseline can be expressed as:Y=0.0004x3+0.0098x2+0.3000x(r=0.9989)where Y is tension(metric tons) of a purseline, x is required time(minutes) for pursing. And, the maximum value of tension in this time was an increase of 31.3 percent at 15 minutes, and was a decrease of 30.3 percent at 30 minutes than that of 20 minutes.When the bottom margin of net is held on the position in velocity of 0.5 knot at three-eighths of net in the bottom current to the net height, the maximum tension of the required time for pursing of 30 minutes in tight set and loose set were decrease of 29.5 percent and 28.7 percent respectively than that of 20 minutes.The work load during the required time for pursing of 20 minutes were calculated 5.79×106 kgf·m in no current set, 7.89×106 kgf·m in tight set and 5.15×106 kgf·m in loose set, therefore it was an increase of 22.3 percent in tight set, and was a decrease of 11.1 percent in loose set than that of the no current set. Where tight set and loose set is a range of the bottom current with velocity of 0.5 knot at three-eighths of net to the net height.

  • PDF

Mesh Selectivity of the Gill Net for Anchovy, Engraulis japonica (멸치 자망의 망목선택성에 관하여)

  • SOHN Tae Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.6
    • /
    • pp.506-510
    • /
    • 1985
  • It is an important work to determine the mesh size of gill net for efficient catch. For investigating the suitable mesh size, the gill net for anchovy, Engraulis japonica was made and operated in the bay of Ulsan in July. 1983. The gill net for anchovy was composed of six different mesh size, 23.1mm (H=0.65), 21.6mm (H=0.65), 20.0mm (H=0.65), 23.1mm (H=0.55), 21.6mm (H=0.55) and 20.0mm(H=0.55). The parts of body caught by the gill net was examined, and the selectivity curves (for reference Ishida's method) with respect to the each mesh size were estimated using the data obtained through the operation of research gill net. The main results of this study are as follows: 1. The number of anchovy whose neck was in net was 148, more than $90\%$ of all, 161 2. The coefficient of relationship between the circumference of neck and the fork length were 0.70. 3. Fork length that the relative fishing efficiency of 23.1 mm mesh size (H=0.55) was maximum value was about 11.1 centimeter.

  • PDF

EOMETRIC ANALYSIS OF NET PRESENT VALUE AND INTERNAL RATE OF RETURN

  • GABRIEL FILHO, L.A.;CREMASCO, C.P.;PUTTI, F.F.;GOES, B.C.;MAGALHAES, M.M.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.75-84
    • /
    • 2016
  • The objective of this work is to perform a geometric analysis of the net present value (NPV) and Internal Rate of Return (IRR), defining analytics and in verifying the relationship between geometric properties of such functions. For this simulation, was used the values of the cash flows for each period identical and equal to US$ 200.00 cash, the initial investment US$ 1,000.00 and investments of each identical and equal to US$ 50.00 period. In addition, the discount rate and time were considered a maximum of 2 years (24 months) at a rate between 0 and 100%. The geometric analysis of the characteristics obtained from the expressions of the Net Present Value and Internal Rate of Return possible to observe that besides the analytical dependence between these quantities , the geometric relationships are relevant when studied in relation to the zero NPV and expressed a great contribution the sense of a broad vision for the administrator in the analysis of analytical variables that in uences the balance sheet of the company.

Radiological safety assessment of lead shielded spent resin treatment facility with the treatment capacity of 1 ton/day

  • Byun, Jaehoon;Choi, Woo Nyun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.273-281
    • /
    • 2021
  • The radiological safety of the spent resin treatment facility with a14C treatment capacity of 1 ton/day was evaluated in terms of the external and internal exposure of worker according to operation scenario. In terms of external dose, the annual dose for close work for 1 h/day at a distance of more than 1 m (19.8 mSv) satisfied the annual dose limit. For 8 h of close work per day, the annual dose exceeded the dose limit. For remote work of 2000 h/year, the annual dose was 14.4 mSv. Lead shielding was considered to reduce exposure dose, and the highest annual dose during close work for 1 h/day corresponded to 6.75 mSv. For close work of 2000 h/year and lead thickness exceeding 1.5 cm, the highest value of annual dose was derived as 13.2 mSv. In terms of internal exposure, the initial year dose was estimated to be 1.14E+03 mSv when conservatively 100% of the nuclides were assumed to leak. The allowable outflow rate was derived as 7.77E-02% and 2.00E-01% for the average limit of 20 mSv and the maximum limit of 50 mSv, respectively, where the annual replacement of the worker was required for 50 mSv.

Performance Analysis of Kalina Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Energy Source (저온 열원 활용을 위한 암모니아-물 혼합물을 작동유체로 하는 칼리나 사이클의 성능 해석)

  • Kim, Kyoung-Hoon;Ko, Hyung-Jong;Kim, Se-Woong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.109-117
    • /
    • 2011
  • Since the thermal performance of cycles for use of low-temperature source is low if a pure working fluid is used, the cycles using ammonia-water binary mixture as a working fluid has attracted much attention over past two decades. Recently, several commercial power plants using Kalina cycles have been built and being operated successfully. In this work thermodynamic performance of Kalina cycles using ammonia-water mixture as a working fluid is investigated for the purpose of extracting maximum power from low-temperature energy source. Special attention is paid to the effect of system parameters such as concentration of ammonia and turbine inlet pressure on the characteristics of the system. Results show that the system performance is influenced sensitively by the ammonia concentration, and the role of the performance of heat exchangers is crucial.

Performance Analysis of Ammonia-Water Regenerative Rankine Cycles for Use of Low-Temperature Energy Source (저온 열원 활용을 위한 암모니아-물 재생 랭킨 사이클의 성능 해석)

  • Kim, Kyoung-Hoon;Han, Chul-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • It is a great interest to convert more energy in the heat source into the power and to improve the efficiency of power generating processes. Since the efficiency of power generating processes becomes poorer as the temperature of the source decreases, to use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of the system. In this work performance of ammonia-water regenerative Rankine cycle is investigated for the purpose of extracting maximum power from low-temperature waste heat in the form of sensible energy. Special attention is paid to the effect of system parameters such as mass fraction of ammonia and turbine inlet pressure on the characteristics of system. Results show that the power output increases with the mass fraction of ammonia in the mixture, however workable range of the mass fraction becomes narrower as turbine inlet pressure increases and is able to reach 16.5kW per unit mass flow rate of source air at $180^{\circ}C$.

The development of a fuel lifecycle reactivity control strategy for a generic micro high temperature reactor

  • Seddon Atkinson;Takeshi Aoki
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.785-792
    • /
    • 2024
  • This article provides an overview of the design methodology used to develop a conceptual set of reactivity control mechanism of a micro reactor based on the U-Battery. The U-Battery is based on remote deployment and therefore it is favourable to provide a long fuel lifecycle. This is achieved by implementing a high fissile loading content, which proves challenging when considering reactivity control methods. This article follows the design methodology used to overcome these issues, with an emphasis on a new concept of a moveable moderator which utilises the size of the U-Battery as a small reduction in moderation provides a significant reduction in reactivity. The latest work on this project sees the moveable moderator investigated during a depressurised loss of forced coolant accident, where a reduction of moderator volume increases the maximum fuel temperature experienced. The overall conclusion is that the maximum fuel temperature is not significantly increased (4 K) due to the central reflector region relatively lower volumetric heat capacity compared to that of whole core. However, a small temperature increase is observed immediately after the transient due to the central reflector removal because it reaches energy equilibrium with the fuel region faster.